



#### Integrating Site Monitoring and Ergonomics into Smart Construction

#### Prof. Heng Li

Chair Professor of Construction Informatics

**BRE/HK PolyU** 







### Content

1. Automated site management based on IoT, Smart Insole and Computer Vision

- 2. Establishing traceability chain for quality management based on tool tracking
- 3. Integrating ergonomics with smart construction

4. Future Plan

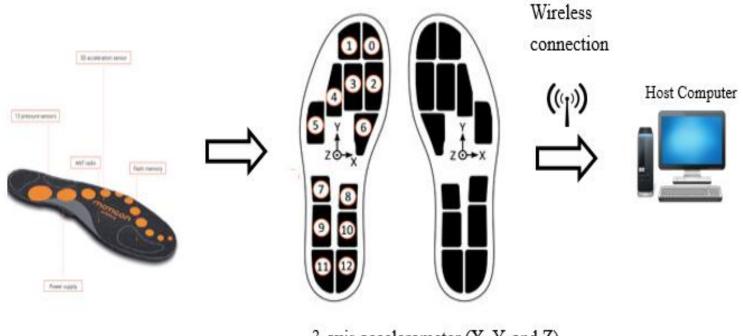




- > Management focuses on reactive/remedial actions
- > Increasing 'management cost';



### 1. Automated site management based on IoT, Smart Insole and Computer Vision




Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

Location-based Technologies for Real-time Site Safety Management System 應用於工地的 實時風險警報管理系統



### Smart Insole



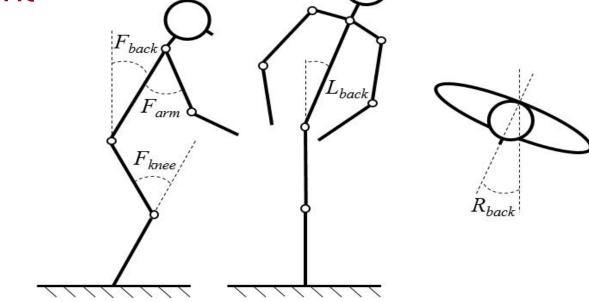
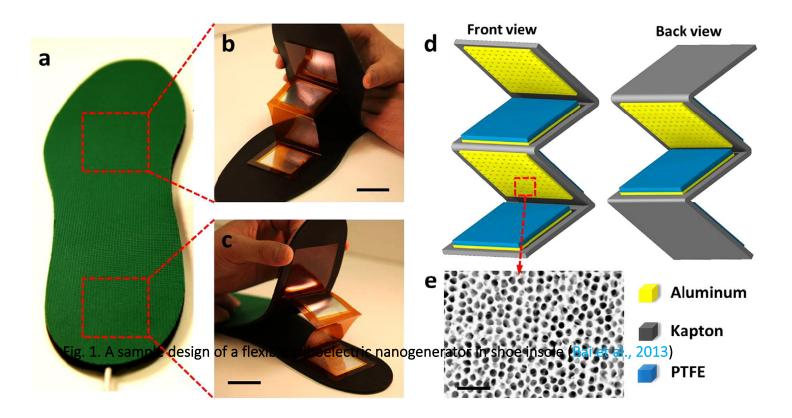

3-axis accelerometer (X, Y, and Z) 13 force capacitor per insole sensor

Figure 5: Overview of Foot Plantar Pressure Sensing System





# Predicting postures of workers from inverse dyna



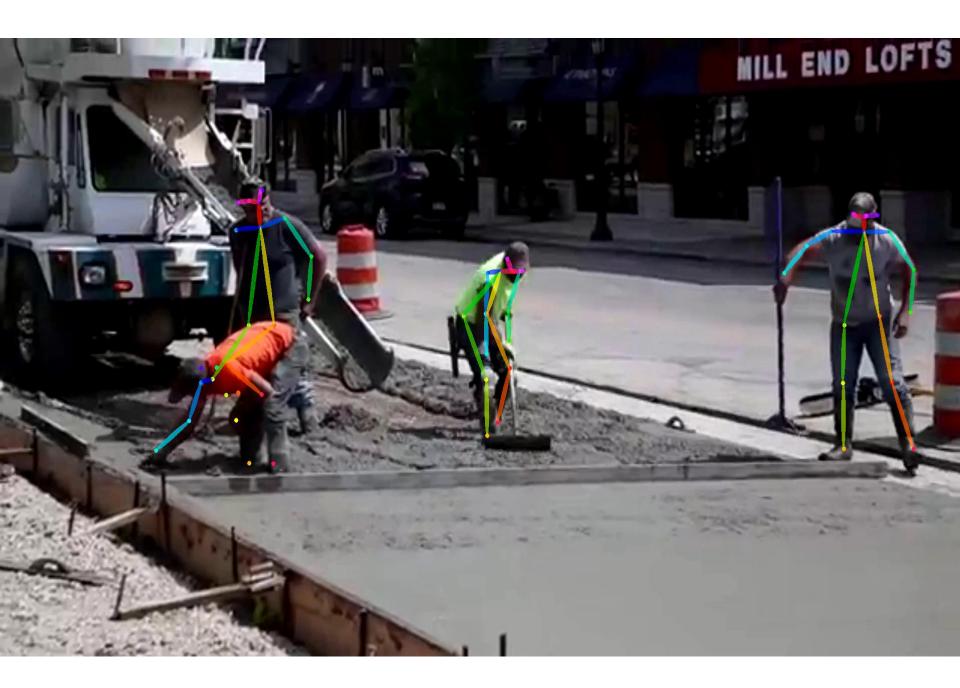



Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

### Self-power system



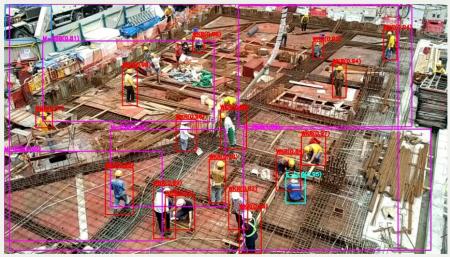


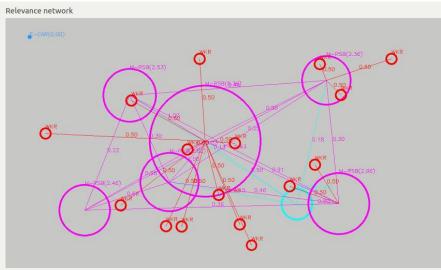



The Hong Kong Polytechnic University

港理工大學

### Computer vision and deep learning

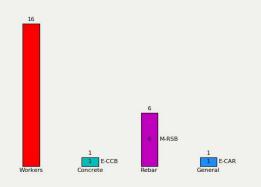



# From recognizing action to recognizing activity, to productivity



Visual detection






Summary

#### ONGOING ACTIVITIES:

1): 16 worker(s) involved in fixing, erecting, or treating rebar



Analysis in progress

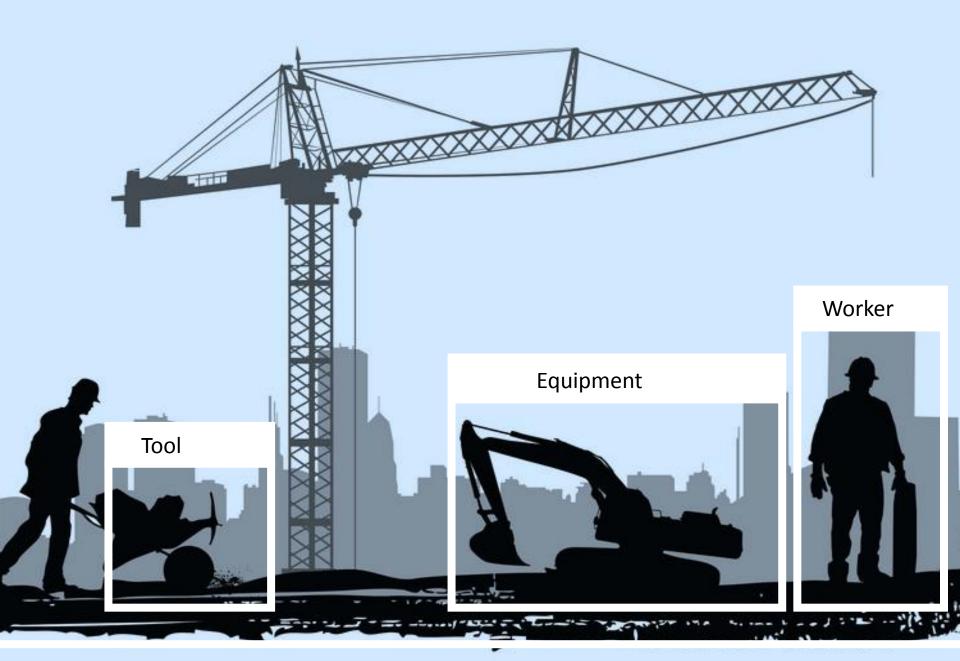


### 2. Establishing traceability chain for quality management based on tool tracking





#### A reliable way to record- Traceability




By X.Y.

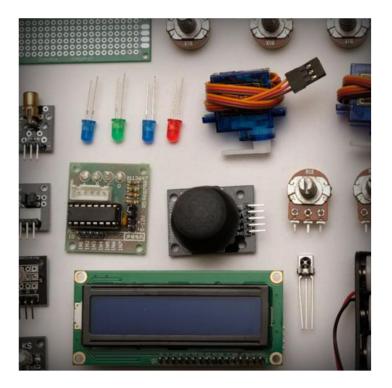


Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

**Construction Site** 










Opening Minds • Shaping the Future • 啟迪思維 • 成就未來



#### Hardware





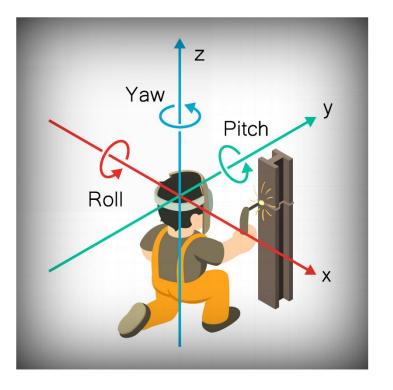
System Inertial Measurement Unit

Bluetooth Low Energy 4.2

- Communication 4.2 Mbits / s
- Distance 50 m

By X.Y.




#### IMU based tracking

#### system



| 7件 语言 | 帮助               |                                                                                                                 |       |                |                     |        |       |         |        |       |      |
|-------|------------------|-----------------------------------------------------------------------------------------------------------------|-------|----------------|---------------------|--------|-------|---------|--------|-------|------|
| 空制    | 时间               |                                                                                                                 | 实时计算  | 实时绘制           | 详细设置                |        |       |         |        |       |      |
| 设置    | 实际时间             | ĺ                                                                                                               | 校准模   | <del>ت</del> ڑ |                     |        |       |         |        |       |      |
| 连 接   | 工作时间             |                                                                                                                 | 加速度   | 度计校准           | 陀螺仪材                | 淮      | 地磁计校  | 准       | 調度校准   |       | 退出校准 |
| 校准清零  |                  |                                                                                                                 |       |                |                     |        |       |         |        |       |      |
| ]加速度  | 加速度              |                                                                                                                 | 零偏设   | 置              |                     |        |       |         |        |       |      |
| 角速度   | x轴:              | m / s2                                                                                                          | 加速度   | 國家偏            | _                   | 角速度    | 意零偏   |         | 地磁到    | 虽度偏移  |      |
| 速度    | y轴:              | m / s2                                                                                                          | ×轴:   | 0.00           | m / s2              | x轴:    | 0.00  | deg / s | x轴:    | 0.00  | mG   |
| 地磁强度  | z 轴:             | m / s2                                                                                                          | y 轴:  | 0.00           | <mark>m /</mark> s2 | y 轴:   | 0.00  | deg / s | y 轴:   | 0.00  | mG   |
|       | 角速度              |                                                                                                                 | z轴:   | 9.80           | m / s2              | z 轴:   | 0.00  | deg / s | z 轴:   | 0.00  | mG   |
|       | x 轴:             | deg / s                                                                                                         |       | 确定             |                     |        | 确定    |         |        | 确     | 完    |
| 17 11 | y 轴:             | deg / s                                                                                                         |       |                |                     |        |       |         |        |       | ~    |
|       | z 轴:             | deg / s                                                                                                         | 回传设   | <b></b>        |                     |        |       |         |        |       |      |
|       | 角度               | in the second | 1.000 |                | \+ +                | A 1= d | -     |         | 774738 | ÷ _   | a —  |
|       | x轴:              | deg                                                                                                             | ■ 时   |                | 速度                  | 用速度    | E []) | 角度      | ]磁场强   | E _ 1 | 角定   |
|       | y <del>轴</del> : | deg                                                                                                             | 回传速率  | 函: 10Hz        | <b>•</b>            | 确;     | 定 波 将 | 寺率: 9   | 600    | ▼ ã   | 角定   |
|       | z轴:              | deg                                                                                                             |       |                |                     |        |       |         |        |       |      |
|       | 地磁强度             |                                                                                                                 | 其他设   | 置              |                     |        |       |         |        |       |      |
|       | x 轴:             | mG                                                                                                              | E LED | 20 <b>2</b> 10 | 定                   |        |       |         |        |       |      |
|       | y 轴:             | mG                                                                                                              |       |                | Æ                   |        |       |         |        |       |      |
|       | z轴:              | mG                                                                                                              |       |                |                     |        |       |         |        |       |      |

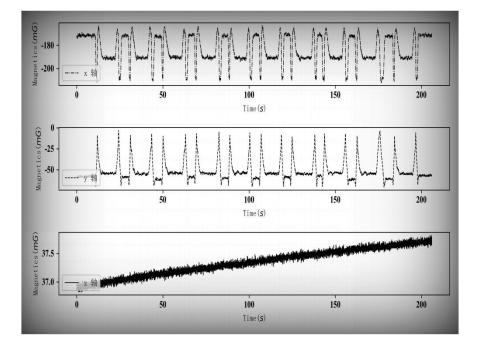


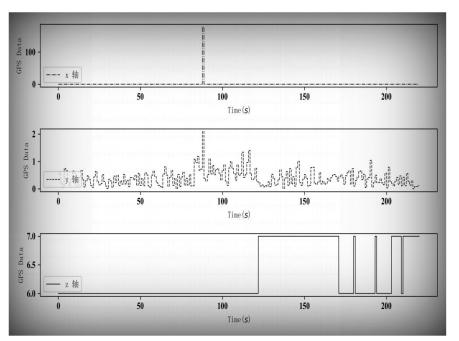


$$\phi = \tan^{-1} \frac{a_y}{a_z}$$
  

$$\theta = \tan^{-1} \frac{-a_x}{\sqrt{a_x^2 + a_y^2}}$$
  

$$= \tan^{-1} \frac{-m_x^N}{m_y^N} \pm \Delta \psi$$
  


$$= \tan^{-1} \frac{-\cos\phi m_y^B + \sin\phi m_z^B}{\cos\theta m_z^B + \sin\phi \sin\theta m_y^B + \cos\phi \sin\theta m_z^B} \pm \Delta \psi$$

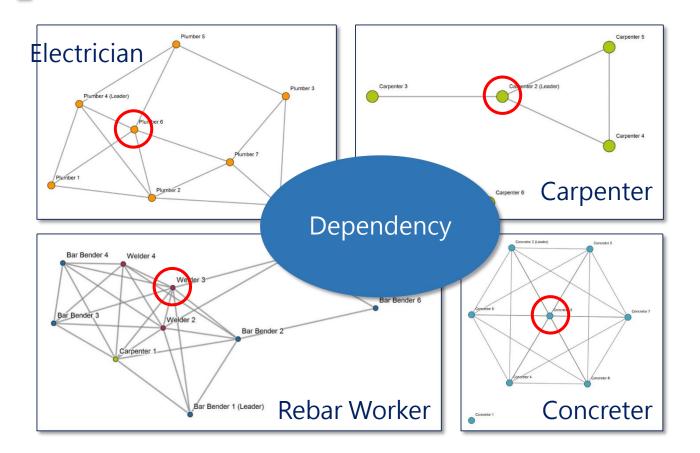

ψ

By X.Y.







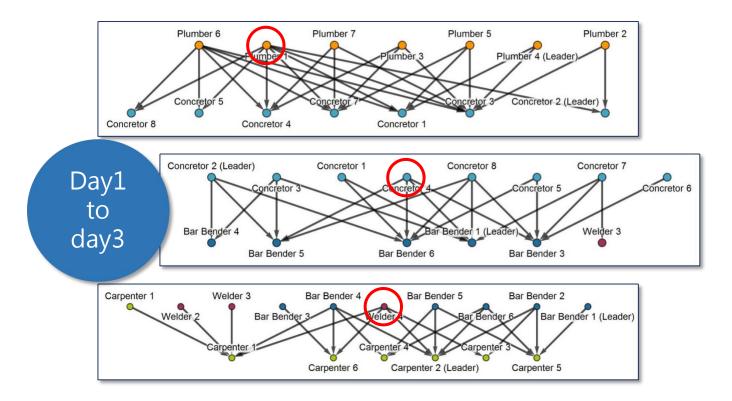



By X.Y.





#### Dependence network



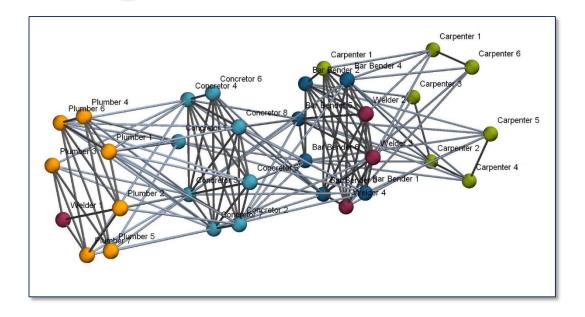



Opening Minds • Shaping the Future • 啟迪思維 • 成就未來



#### Sequential inter-dependency netweork






Opening Minds • Shaping the Future • 啟迪思維 • 成就未來



THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

### Traceability chain



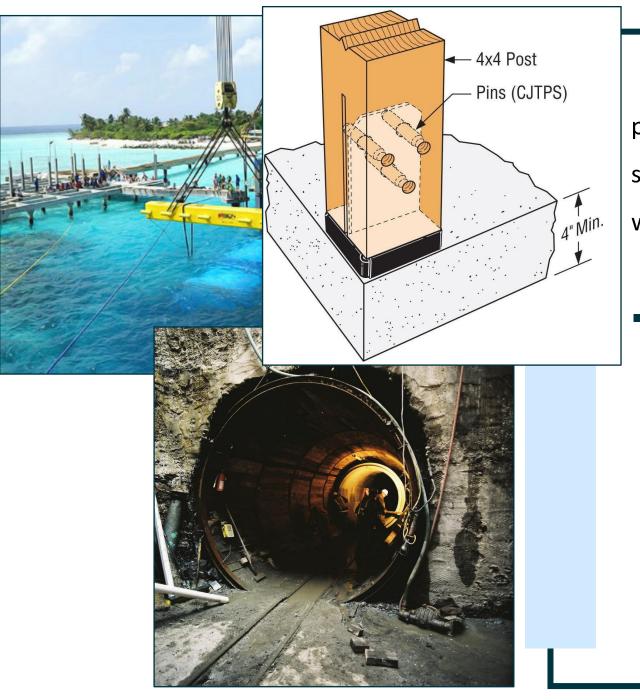
It is possible to develop a traceability chain using the dependency network. This allows to trace "who should be responsible for it, if something goes wrong"

#### HOW IS A PLANE TRACKED?

On board are cockpit voice and flight data recorders – the 'black boxes' – which each include a 'pinger' that sends a transmission up to 30 days after submersion.

In the black box was an ASD-B flight transponder which, unlike the GPS in a car, broadcasts its location by sending information back to air traffic controllers every second.

Crews are able to speak to their airline through discrete radio channels. The aircraft was comfortably at a stage of flight when the pilot would have had plenty of time to report any mechanical problems to Air Traffic Control.


Black boxes on commercial aircraft also contain cockpit voice recorders which could provide some insight into what went wrong on that plane at 1am on Friday morning.

> Flight Data Recorder Records more than 100 hours of data. An insulated armoured steel housing protects the unit from impact, fire and sea water

> > ENREGISTREUR DE VOL NEPAS OUVRIR

© MailOnline





This technology is potentially useful in situations where portions of work are invisible.



# 3. Integrating ergonomics with smart construction







25



#### **Research background**

# Construction workers are faced with high workloads

- Physical demanding
- Confined work space
- Prolonged duration
- Insufficient break

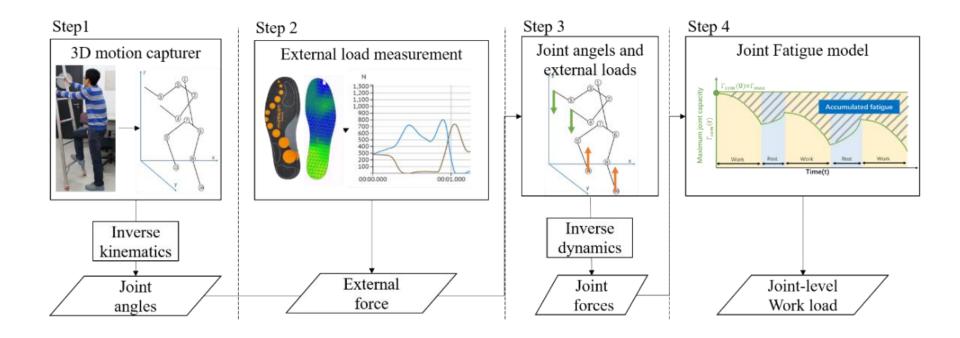
| DEPARTMENT OF          |
|------------------------|
| BUILDING & REAL ESTATE |
| 建築及房地產學系               |



#### **Research background**

| 0<br>1<br>2<br>3<br>4<br>3<br>6<br>7<br>7<br>8<br>9<br>9 | O-10 Borg Kating of<br>Perceived Exertion Scale<br>Rest<br>Rest<br>Restly casy<br>Easy<br>Moderate<br>Sort of hard<br>Hard<br>Really hard<br>Really hard<br>Really, really, hard |                                                            |                                                          |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|
| Manual                                                   | record                                                                                                                                                                           | Wearable sensors                                           | Vision-based methods                                     |
|                                                          | implementation<br>ective data                                                                                                                                                    | <ul> <li>Accurate results</li> <li>Invasiveness</li> </ul> | <ul><li>Accurate results</li><li>× Indoor only</li></ul> |

#### Previous fatigue assessment methods




#### Accurate Non-invasive

#### Outdoor



#### **Research method**



| 1   | DEPARTMENT OF       |
|-----|---------------------|
| BUI | LDING & REAL ESTATE |
| S   | 建築及房地產學系            |





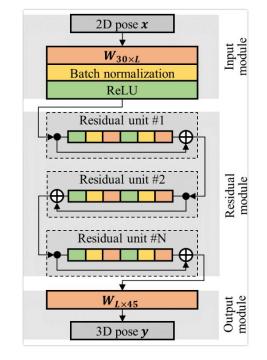




#### **Research method**

Task1 3D motion capture from 2D images Residual ANN

- ♦ Fully connected layer
- ♦ Increase the number of neurons in each layer

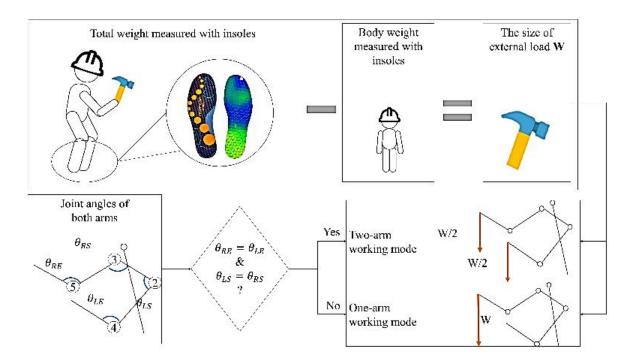

 $Y^{(l)} = Y^{(l-1)}W + b$ 

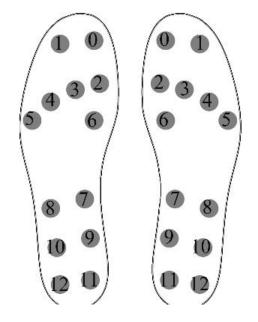
- Activation layer
- ♦ Increase the non-linearity of a neural network

$$g(y_{ij}) = \max(0, y_{ij})$$

- Batch-norm layer
- ♦ Improve the stability and consistency

$$\widehat{y} = \frac{y - \mu}{\sqrt{\sigma^2 + \epsilon}}$$
$$y_{BN} = \gamma \circ \widehat{y} + \beta$$





|     | DEPARTMENT OF       |
|-----|---------------------|
| BUI | LDING & REAL ESTATE |
|     | 建築及房地產學系            |

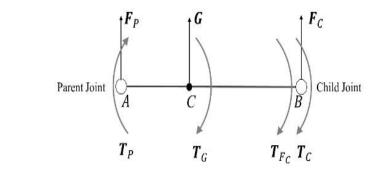


#### **Research method**

#### Task 2 External load estimation with smart insoles






|      | DEPARTMENT OF      |
|------|--------------------|
| BUIL | DING & REAL ESTATE |
| s    | 建築及房地產學系           |



#### **Research method**

#### Task 3 Joint torque calculations

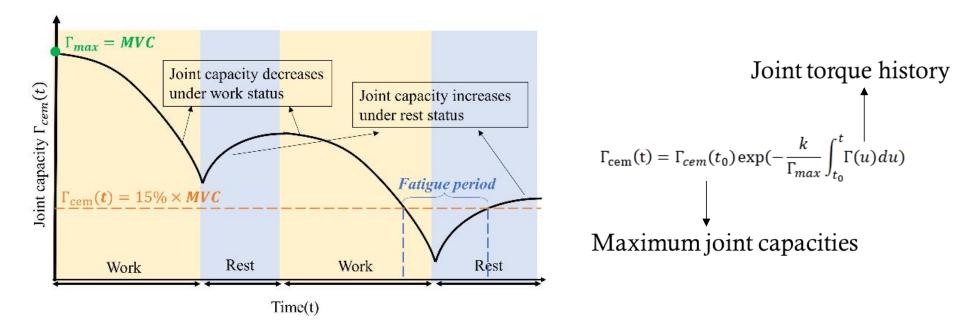
Current joint torques



$$F_{Pr} + F_{Ch} + G = 0$$
$$T_{pr} + T_G + T_{F_{Ch}} + T_{Ch} = 0$$
$$T_G = \overrightarrow{AC} \times G = \overrightarrow{AB} \times G$$
$$T_{F_{Ch}} = \overrightarrow{AB} \times F_{Ch}$$

#### Maximum joint torque capacities

x


| Joint capacity regression | on coefficients |       |      |       |                                                                                    |
|---------------------------|-----------------|-------|------|-------|------------------------------------------------------------------------------------|
| Joint                     | a               | b     | С    | d     |                                                                                    |
| Right shoulder            | 0.17            | 16.26 | 0.17 | 23.35 |                                                                                    |
| Left shoulder             | 0.18            | 14.64 | 0.29 | 19.59 | ( weigh                                                                            |
| Right elbow               | 0.13            | 11.24 | 0.07 | 22.78 | $T_{max} = \left  -a \cdot age + b \cdot gender + c \cdot \frac{weigh}{d} \right $ |
| Left elbow                | 0.11            | 10.63 | 0.05 | 19.66 | height                                                                             |
| Right hip                 | 0.33            | 19.19 | 0.66 | 34.44 | ( norgin                                                                           |
| Left hip                  | 0.29            | 18.75 | 0.47 | 36.05 |                                                                                    |
| Right knee                | 0.16            | 8.78  | 0.08 | 22.47 |                                                                                    |
| Left knee                 | 0.17            | 7.67  | 0.14 | 21.10 |                                                                                    |

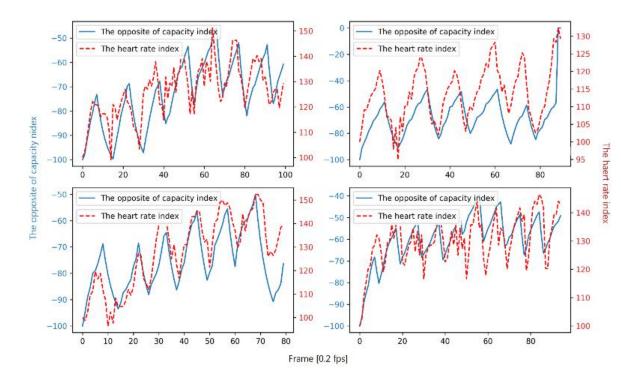




#### **Research method**

Task 4 Joint-level fatigue assessments

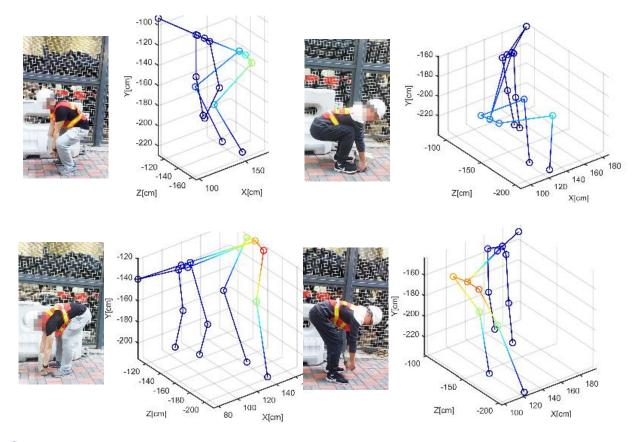



| DEPARTMENT OF          |
|------------------------|
| BUILDING & REAL ESTATE |
| 建築及房地產學系               |



#### **Results and discussion**

#### The accuracy of the fatigue assessment method


- 4 health subjects
- Heart rate monitor (Equivital<sup>™</sup> LifeMonitor, UK)
- Simulated material handling task:
  - A box (6 kg, 37 cm \* 33 cm \* 26 cm).
  - A working platform (4 m \* 3m \* 1m);
  - Repeat the above steps for three times and rest for 5 seconds to start another round.
  - o 10 rounds in total



|      | DEPARTMENT OF      |
|------|--------------------|
| BUIL | DING & REAL ESTATE |
|      | 建築及房地產學系           |

#### **Results and discussion**

#### **Comparison between different work postures**



 Squatting lifting is a better posture for material handling than bending lifting

'HE HONG KONG

ic University

 Latency time: 0.5s for each frame on one GTX 1080Ti GPU.

35

|     | DEPARTMENT OF       |
|-----|---------------------|
| BUI | LDING & REAL ESTATE |
| 5   | 建築及房地產學系            |



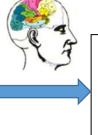
### Study 2: A multicomponent and neurophysiological intervention for the emotional and mental states of high-altitude construction workers 心理疲劳





#### **Research background**

Aimed object: High-altitude construction workers (e.g., Scaffolders)


- *Two main accidents:* Falling from height and object strikes *Four requirements:*
- 1. Technical requirements
- 2. Physical requirements
- 3. Regulation requirements



Scaffolders working at height

4. Emotion and mental status requirements——the causal relationships are as below.

Workers' emotional states (e.g., pleasure, displeasure, excitement, and relaxation)



(1)cognitive status (e.g., attention and motivation),

(2) decision making and behaviors (e.g., risk-taking behaviors affecting unsafe actions),(3) mental and physical health (e.g., stress, sleep disorder, and headache)



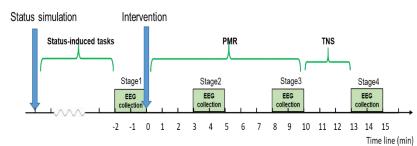
Work performance, such as safety, health, quality, and productivity

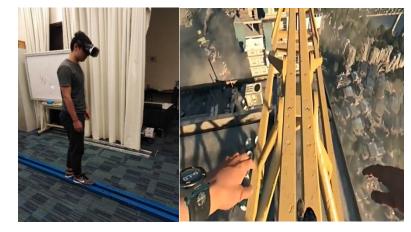




#### **Research method**

#### **Step 1: Status simulation**


Part 1—— Induce mental fatigue Through a modified stroop color-word interference task (30min)


Part 2——Induce certain negative emotions of scaffolders Through a VR mission simulating the high-altitude walk site (10min)



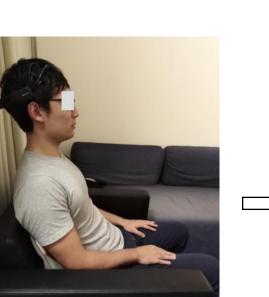
#### An online stroop test





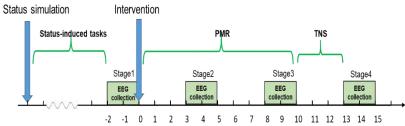


#### VR mission simulating the high-altitude walk


38



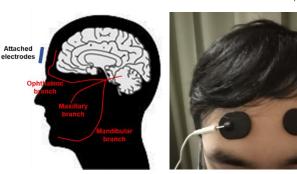
#### **Step 2: Intervention**


Part 1——Progressive muscle relaxation (PMR) (10min)

Part 2——Trigeminal nerve stimulation (TNS) (3min)



Progressive muscle relaxation in a lounge environment


| DEPARTMENT OF          |
|------------------------|
| BUILDING & REAL ESTATE |
| 建築及房地產學系               |

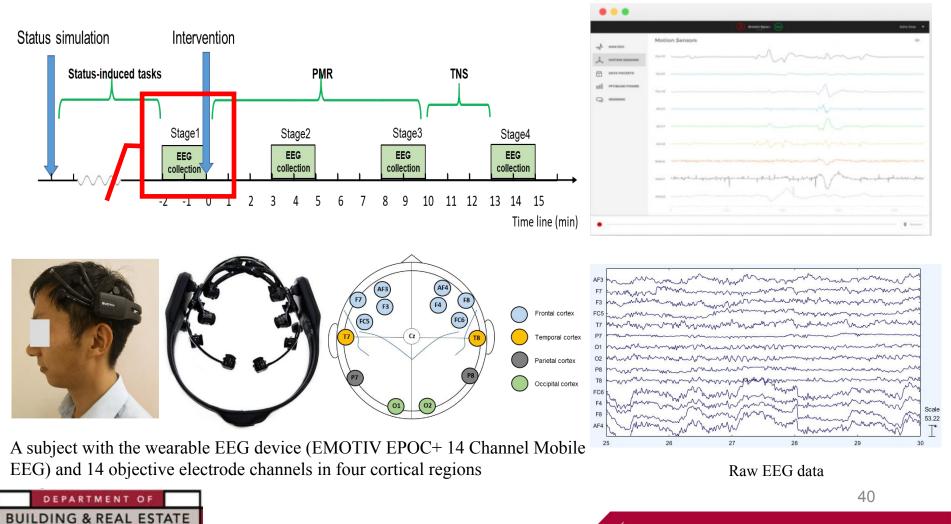


Time line (min)



#### The medical and portable external pulse generator

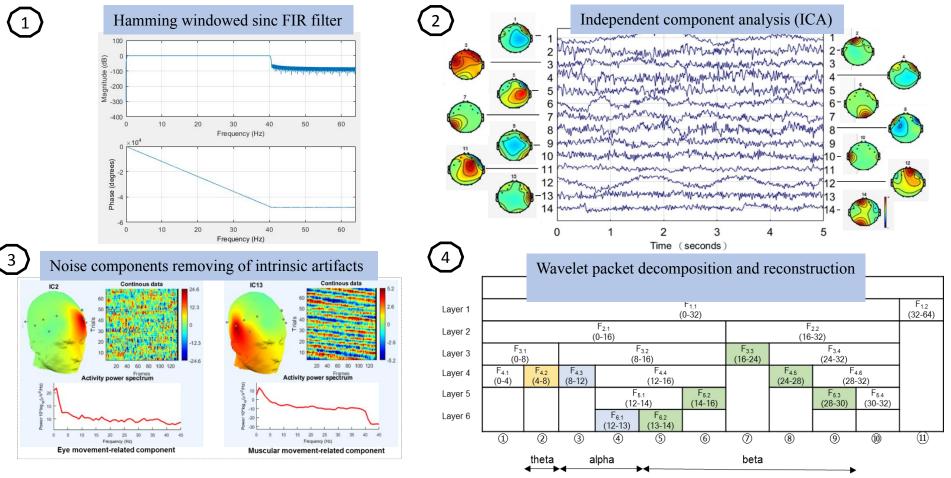



Two adhesive rubber electrodes placed corresponding to the ophthalmic branch of the trigeminal nerve

| Waveform            | Frequency1 (Hz) | Frequency2 (Hz) | Frequency3 (Hz) | Note                 |
|---------------------|-----------------|-----------------|-----------------|----------------------|
| Continuous wave     | 10              | 30              | 50              |                      |
| Discontinuous wave  | 10              | 30              | 50              | 3s on/3s off         |
| Disperse-dense wave | 10/30           | 30/40           | 40/50           | 2s disperse/4s dense |



#### **Research method: Data collection for method evaluation**


建築及房地產學系

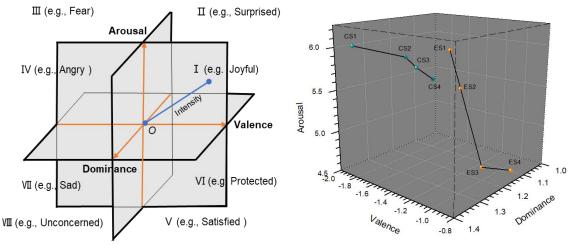


Opening Minds • Shaping the Future • 啟迪思維 • 成就未來



#### **Research method: Data processing**



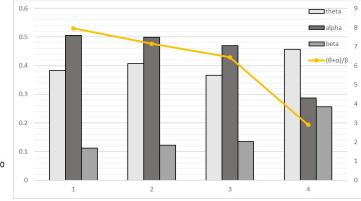



41



#### **Results and discussion**

#### Statistical analysis based on processed EEG signals




#### Emotional state regulation

VDA (Valence-Dominance-Arousal) model

After this multicomponent and neurophysiological intervention, the emotional state of high-altitude construction workers tend to be mitigated to **a relatively pleased, autonomous, and excited level.** 

#### Mental fatigue regulation



#### Trend of mental fatigue adjustment of the experimental group through intervention sessions

The multicomponent and neurophysiological intervention **reduces the mental fatigue** of high-altitude construction workers.

|     | DEPARTMENT OF       |
|-----|---------------------|
| BUI | LDING & REAL ESTATE |
| S   | 建築及房地產學系            |



#### Study 3: Evaluating the impact of mental fatigue on construction equipment operators' ability to detect hazards using wearable eye-tracking technology 体力疲劳和心理疲劳的相互作用





Evaluating the impact of mental fatigue on construction equipment operators' ability to detect hazards using wearable eye-tracking technology

#### **Research background**

- □ Mobile construction equipment and safety
- 50% fatal accidents are related to construction equipment (Marsh and Fosbroke, 2015; OSHA 2018)
- The contact collision between pedestrian workers and equipment accounts for a large portion of construction-equipment-related accident (Shen et al., 2016, CFOI, 2014, Kazan and Usmen, 2018)



#### □ What caused the accident ?

- Operator's faliure in attention is one of the leading cause (Shapira and Lyachin, 2009, Hinze and Teizer, 2011, Fang and Cho, 2017)
- Mental fatigue can easily lead to poor hazard perception performance of construction equipment operations and accidents in the worst case scenario







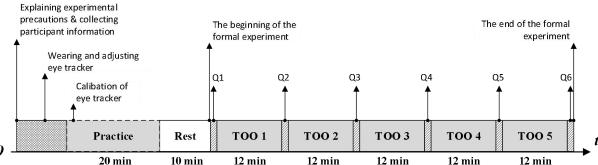
|     | DEPARTMENT OF       |
|-----|---------------------|
| BUI | LDING & REAL ESTATE |
|     | 建築及房地產學系            |



Evaluating the impact of mental fatigue on construction equipment operators' ability to detect hazards using wearable eye-tracking technology

#### **Research method**

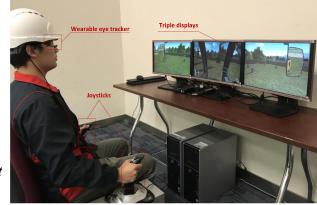
Participants


12 males between the ages 24 and 35.

#### Apparatus and measurement

Wearable eye-tracker and excavator operating simulation system.

#### Experiment design


A Time-On-Task procedure considering an excavate-discharge task and a hazard detection task:

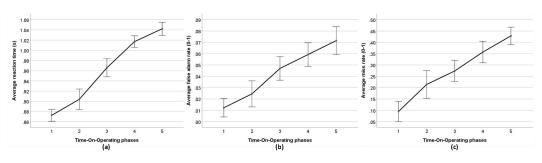






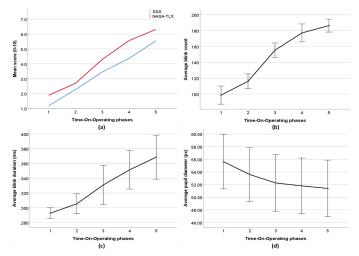
Typical simulated experiment situations

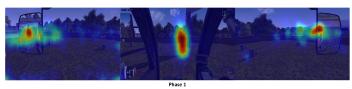


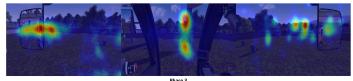


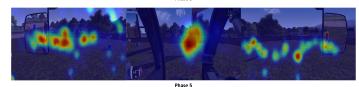



Evaluating the impact of mental fatigue on construction equipment operators' ability to detect hazards using wearable eye-tracking technology


#### **Results and discussion**


- Operator` hazard detection performance decreased when they experienced mental fatigue
- Operators` hazard detection rate decreased to 70% of the initial performance after 36 min of operating and to 60% after a 60 min task:





- The findings indicated that the decrement of operators' hazard detection ability results from the changes in his visual attention allocation with increasing mental fatigue
- The feasibility of eye-tracking technology applied to monitor and quantify construction equipment operators` mental fatigue and hazard detection decrement was demonstrated















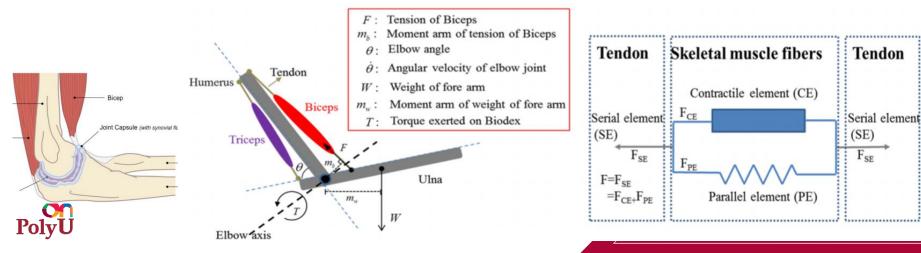
## 3. Future Plan



# Future project 1: Wearable artificial muscles for reducing the risk of muscle fatigues

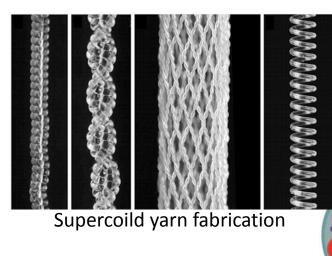

Opening Minds • Shaping the Future 啟迪思維 • 成就未來




#### Task 1. Identifying Muscle Capacity Gap

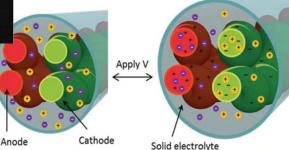
#### Identifying and modelling of fatigue-prone muscle groups

- Calculating the stress of each muscle group through biomechanical analysis
- Identifying the fatigue-prone muscle fatigue with a muscle fatigue model
- $\circ~$  Calculating and modeling the muscle capacity gap



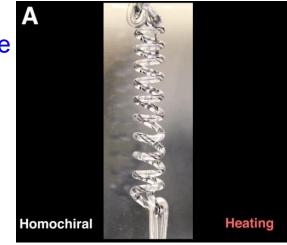

#### Example model for elbow joint:




## Task 2. Design and fabrication of artificial muscle actuators

- Fabrication of supercoiled fiber/polymer-based artificial muscle actuators
- Synthesize high performance electrolyte to enhance the stroke of actuators
- Produce various electrothermally driven and electrochemically driven actuators






High performance electrolyte



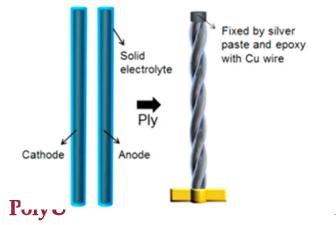
Thermal driven coil polymer fiber actuator

**FHE HONG KONG** 

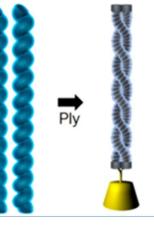


#### Large current driven actuator






#### Task 3. Developing Wearable Artificial Muscle Apparati


- **\*** Optimizing artificial muscle performance to support fatigue-prone muscles Integrate into fabrics
  - Relationship between processing parameter and artificial muscle performance
  - Optimizing performance based on the property of fatigue-prone muscles
  - Encapsulating and Integrating towards wearable 0 devices



#### Rotational artificial muscle

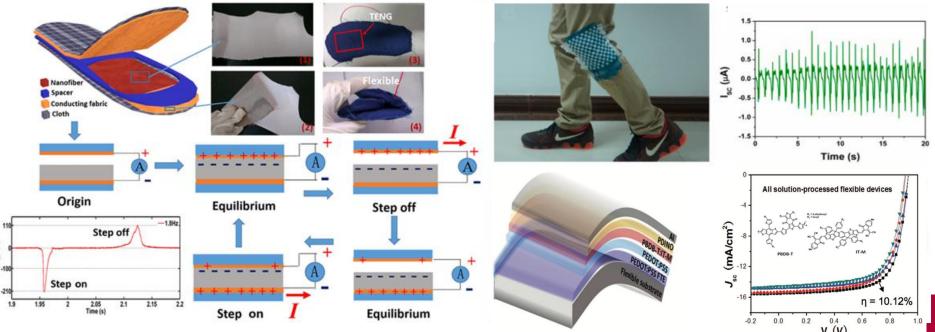


#### Tensional artificial muscle



#### Potential diverse applications

And could be used for miniature medical devices. deployable structures or wearable robotics




## Task 2. Designing green energy harvesting system to power artificial muscles

THE HONG KONG

- Integrate triboelectric nanogenerators to harvest mechanical energy of works
- o Integrate flexible organic solar cells to gain energy from sunlight exert on works
- Develop power management unit to control sustainable power supply for artificial muscles

Harvesting mechanical and solar energy





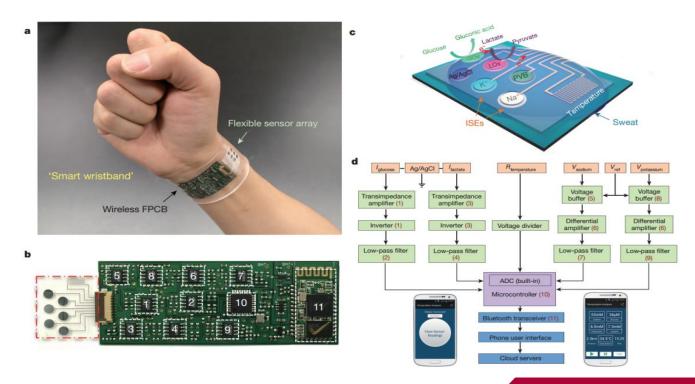


## Future project 2: Tele-operated and machinery, and robots





### A pilot project: construction waste recycling robot for nails and screw (funded by Environment and conservation Fund)


- >Path planning algorithm for complete coverage search
- >Grasping algorithms for robotic hands







### Future Project 3: Measurement of physical and mental stress based on psychophysiological measurements





Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

55



## Ground truth of physical and mental fatigue measures





Portable blood lactate analyzer (Lactate Plus)

Portable saliva based cortisol monitoring system, VerOFy





## Conclusions

Construction activities are complex due to interactions between man, machine and material

Site safety is important and it needs hi-tech.









