• ISSN: 1674-7461
  • CN: 11-5823/TU
  • Hosted by: China Society and Technology Association
  • Organizer: China Graphics Society
  • Guidance: China Academy of Building Research

Citation: Jiameng Yuan, Lang Chen, Weiya Chen, Hanbin Luo. Research on Multimodal Retrieval Methods for Historical Buildings. Journal of Information Technologyin Civil Engineering and Architecture, 2024, 16(4): 7-13. doi: 10.16670/j.cnki.cn11-5823/tu.2024.04.02

2024, 16(4): 7-13. doi: 10.16670/j.cnki.cn11-5823/tu.2024.04.02

Research on Multimodal Retrieval Methods for Historical Buildings

1. 

School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

National Digital Construction Technology Innovation Center, Wuhan 430074, China

Corresponding author: 陈维亚,

Web Publishing Date: 2024-08-20

Fund Project: 国家自然科学基金项目 72001086

[1]

Murphy M., Mcgovern E., Pavia S., et al. Historic building information modelling (HBIM), 2009: 311-327.

[2]

Dore C., Murphy M. . Integration of historic building information modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites[C]// International Conference on Virtual Systems and Multimedia, 2012.

[3]

Murphy M., Corns A., Cahill J., et al. Developing Historic Building Information Modelling Guidelines and Procedures for Architectural Heritage in Ireland[J]. Semantic Scholar, 2017, 8: 539-546.

[4]

López F J, Lerones P M, Llamas J, et al. A review of heritage building information modeling (HBIM)[J]. Multimodal Technologies and Interaction, 2018, 2(2): 21.doi: 10.3390/mti2020021

[5]

Devesh R, Jha J, Jayaswal R, et al. Retrieval of monuments images through ACO optimization approach[J]. Int. Res. J. Eng. Technol, 2017, 4(7): 279-285.

[6]

Devesh R, Jha J. An Efficient Approach for Monuments Image Retrieval Using Multi-visual Descriptors[C]//Proceeding of the Second International Conference on Microelectronics, Computing & Communication Systems (MCCS 2017). Springer Singapore, 2019: 281-293.

[7]

Jha J, Bhaduaria S S. A novel approach for retrieval of historical monuments images using visual contents and unsupervised machine learning[J]. Int J, 2020, 9(3).

[8]

文政颖, 卫欣. 多分辨批量古典建筑图像深度学习检索算法[J]. 河南工程学院学报(自然科学版), 2019, 31(02): 66-71.

[9]

杨蕾. 基于深度学习的地标建筑图像检索研究与实现[D]. 西安: 西安建筑科技大学, 2022.

[10]

Agarwal A, Saxena V. Content based multimodal retrieval for databases of Indian monuments[C]//Contemporary Computing: Third International Conference, IC3 2010, Noida, India. Proceedings, Part Ⅰ 3. Springer Berlin Heidelberg, 2010: 446-455.

[11]

Wu H, Mao J, Zhang Y, et al. Unified visual-semantic embeddings: Bridging vision and language with structured meaning representations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6609-6618.

[12]

Matsubara T. Target-oriented deformation of visual-semantic embedding space[J]. Leice Transactions on Information and Systems, 2021, 104(1): 24-33.

[13]

Wang Z, Liu X, Li H, et al. Camp: Cross-modal adaptive message passing for text-image retrieval[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 5764-5773.

[14]

Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.doi: 10.1145/3065386

[15]

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv, 2014: 1409.1556.

[16]

Chen W, Liu Y, Wang W, et al. Deep learning for instance retrieval: A survey[J]. arXiv preprint arXiv, 2021: 2101.11282.

[17]

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30.

[18]

Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv, 2010: 11929, 2020.

[19]

Caron M, Touvron H, Misra I, et al. Emerging properties in self-supervised vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 9650-9660.

[20]

Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning. PMLR, 2021: 8748-8763.

[21]

青岛安娜别墅_百度百科(baidu. com) [EB/OL] (2023-08-19) [2023-10-28]

[22]

Chen W, Yuan J, Luo H. Design and development of heritage building information model (HBIM) database to support maintenance[J]. EG-ICE International Workshop on Intelligent Computing in Engineering, 2022: 359-367.

Metrics
  • PDF Downloads(14)
  • Abstract views(525)
  • HTML views(245)
Catalog

Figures And Tables

Research on Multimodal Retrieval Methods for Historical Buildings

Jiameng Yuan, Lang Chen, Weiya Chen, Hanbin Luo

  • Copyright © Journal of Information Technologyin Civil Engineering and Architecture Editorial Office
  • 京ICP备17057008号
  • Address:No.30 Bei San Huan Dong Lu,Beijing 100013,China
  • Tel:010-64517910 Postcode:100013
  • Wechat:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn