2022, 14(3): 131-142. doi: 10.16670/j.cnki.cn11-5823/tu.2022.03.19
基于BIM的消防设计自动审查关键技术研究进展
1. | 大同市消防救援支队,大同 037000 |
2. | 和平区消防救援支队,天津 300090 |
3. | 中国建筑科学研究院有限公司 建筑防火研究所,北京 100013 |
Research Progress on Key Technologies of Automatic Fire Protection Design Review Based on BIM
1. | Datong City Fire Rescue Detachment, Datong 037000, China |
2. | Heping District Fire Rescue Detachment, Tianjin 300090, China |
3. | Instituete of Building Fire Research, China Academy of Building Research, Beijing 100013, China |
引用本文: 马一飞, 吴海洋, 赵利宏, 卫文彬, 孟天畅. 基于BIM的消防设计自动审查关键技术研究进展[J]. 土木建筑工程信息技术, 2022, 14(3): 131-142. doi: 10.16670/j.cnki.cn11-5823/tu.2022.03.19
Citation: Yifei Ma, Haiyang Wu, Lihong Zhao, Wenbin Wei, Tianchang Meng. Research Progress on Key Technologies of Automatic Fire Protection Design Review Based on BIM[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2022, 14(3): 131-142. doi: 10.16670/j.cnki.cn11-5823/tu.2022.03.19
摘要:人工消防设计审查方式耗时长、审查尺度难把控、效率较低,近几年国内推行的建筑信息模型(BIM)审查系统仍以二维施工图人工审查为主、BIM审查为辅,在消防设计审查方面仅实现了局部自动化。为了实现基于BIM的消防设计自动审查,提高消防设计审查效率,本文对基于BIM的消防设计自动审查关键技术进行了综述,介绍了合规性自动审查系统的发展现状; 针对消防设计自动审查的关键技术即消防标准规范的信息抽取技术和基于BIM模型的消防设计信息提取技术,进行了研究现状和不足之处的综述; 讨论了关键技术的具体方法选择原则及思路,并建议加强BIM相关规范的顶层设计; 为消防设计自动审查体系的完善、消防设计审查主管部门审查工作的顺利开展以及工程建设审批时限的缩短和政府“放管服”改革的纵深推进提供了决策支持,具有较强的实用意义。
Abstract: Manual fire design review is time-consuming, difficult to control the review scale, and low efficiency. In recent years, the Building Information Model (BIM) review system promoted in China is still dominated by manual review of two-dimensional construction drawings, supplemented by BIM review, and only partial automation has been achieved in fire design review. In order to realize the automatic fire design review based on BIM and improve its efficiency, this article summarizes the key technologies of automatic fire design review based on BIM. Firstly, the development status of automatic compliance review system is introduced, and then the key technologies of automatic review of fire design, namely the information extraction technology of fire protection standards and specifications and fire design information extraction technology based on BIM model are summarized. Finally, the specific method selection principles and ideas of key technologies are discussed, and it is suggested to strengthen the top design of BIM related specifications. This article can provide decision support for the improvement of automatic fire design review system, the smooth development of the review work of the fire design review department, the shortening of the implementation of project construction approval, and the in-depth promotion of the government′s reform of "Delegating Supervision and Serving", which has a strong practical significance.
[1] |
中华人民共和国住房和城乡建设部. 建设工程消防设计审查验收管理暂行规定[EB/OL]. [2020-09-01]. http://www.mohurd.gov.cn/fgjs/jsbgz/202004/t20200 404_244813.html. |
[2] |
舒赛. 支持图审的消防设计规范条文自动结构化方法[D]. 武汉: 华中科技大学土木工程与力学学院, 2019. |
[3] |
Gu J, Zhang H, Gu M. Automatic integrity checking of IFC models relative to building Regulations[C]//Proceedings of the International Conference on Internet Multimedia Computing and Service. Xi'an: Association for Computing Machinery, 2016, 52-56. |
[4] |
Zhang J, El-Gohary N M. Semantic-based logic representation and reasoning for automated regulatory compliance checking[J]. Journal of Computing in Civil Engineering, 2017, 31(1): 04016037.doi: 10.1061/(ASCE)CP.1943-5487.0000583 |
[5] |
Soliman-Junior J, Formoso C T, Tzortzopoulos P. A semantic-based framework for automated rule checking in healthcare construction projects[J]. Canadian Journal of Civil Engineering, 2020, 47(2): 202-214.doi: 10.1139/cjce-2018-0460 |
[6] |
lal S M, Günaydin H M. Computer representation of building codes for automated compliance checking[J]. Automation in Construction, 2017, 82: 43-58.doi: 10.1016/j.autcon.2017.06.018 |
[7] |
Fortineau V, Paviot T, Lamouri S. Automated business rules and requirements to enrich product-centric information[J]. Computers in Industry, 2019, 104: 22-33.doi: 10.1016/j.compind.2018.10.001 |
[8] |
Chen L, Xu S, Zhu L, et al. A deep learning based method for extracting semantic information from patent documents[J]. Scientometrics, 2020, 125(1): 1-24.doi: 10.1007/s11192-020-03615-1 |
[9] |
Sacks R, Eastman C, Lee G, et al. BIM handbook: a guide to building information modeling for owners, designers, engineers, contractors, and facility managers[M]. New Jersey: John Wiley & Sons, 2018. |
[10] |
邓亚. 三维建筑消防设计图纸审查系统的研究与实现[D]. 北京: 北京建筑大学电气与信息工程学院, 2016. |
[11] |
吉韵芝. 基于BIM技术的建筑工程消防管理信息系统研究[D]. 长沙: 湖南大学土木工程学院, 2018. |
[12] |
Eastman C, Lee J-M, Jeong Y-S, et al. Automatic rule-based checking of building designs[J]. Automation in construction, 2009, 18(8): 1011-1033.doi: 10.1016/j.autcon.2009.07.002 |
[13] |
郭荣钦, 谢尚贤. BIM导入建筑管理行政作业法规调查研究[EB/OL]. [2020-09-01]. https://www.abri.gov.tw/tw/research/dl/1747/1. |
[14] |
Dimyadi J, Amor R. Automated building code compliance checking-where is it at?[C]//19th International CIB World Building Congress. Brisbane: Construction and Society, 2013, 241. |
[15] |
Jotne. EXPRESS Data Manager[EB/OL]. [2020-09-01]. https://jotneit.no/express-data-manager-edm. |
[16] |
Solibri. Solibri Model Checker[EB/OL]. [2020-09-01]. http://www.solibri.com/products/solibri-model-checker/. |
[17] |
Khemlani L. CORENET e-PlanCheck: Singapore's automated code checking system[EB/OL]. [2020-09-01]. http://www.novacitynets.com/pdf/aecbytes_200526 10.pdf. |
[18] |
ICC. SMARTcodes[EB/OL]. [2020-09-01]. https://www.iccsafe.org/. |
[19] |
novaCITYNETS. FORNAX[EB/OL]. [2020-09-01]. https://fornaxcloud.com/. |
[20] |
Lee H, Lee J-K, Park S, et al. Translating building legislation into a computer-executable format for evaluating building permit requirements[J]. Automation in Construction, 2016, 71: 49-61.doi: 10.1016/j.autcon.2016.04.008 |
[21] |
Park S, Lee J-K. KBimCode-based applications for the representation, definition and evaluation of building permit rules[C]//33rd International Symposium on Automation and Robotics in Construction. Alabama: 2016: 720-728. |
[22] |
GSA U. Courts Design Guide[EB/OL]. [2020-09-01]. https:/r/www.gsa.gov/cdnstatic/Courts_Design_Guide_07.pdf. |
[23] |
Nawari N O. BIM-model checking in building design[C]//Structures Congress. Chicago: 2012, 941-952. |
[24] |
广联达BIM. 广联达BIM审图软件[EB/OL]. [2020-09-01]. http://bim.glodon.com/chanpinzhongxin/2015-12-14/10.html?page=2. |
[25] |
程嗣睿. 基于BIM的图纸审查信息提取方法研究[D]. 武汉: 华中科技大学土木工程与力学学院, 2019. |
[26] |
穆磊. 基于BIM的建筑消防自动审图研究[D]. 北京: 北京建筑大学电气与信息工程学院, 2020. |
[27] |
湖南省住房和城乡建设厅. 湖南省BIM审查系统将于6月试运行[EB/OL]. [2020-09-01]. http://zjt.hunan.gov.cn/zjt/xxgk/gzdt/202004/t20200415_11880 629.html. |
[28] |
广州市住房和城乡建设局. 广州市住房和城乡建设局关于试行开展房屋建筑工程施工图三维(BIM)电子辅助审查工作的通知[EB/OL]. [2020-09-01]. http://zfcj.gz.gov.cn/gkmlpt/content/6/6434/post_6434530.html. |
[29] |
陈远, 张雨, 康虹. 基于知识管理的BIM模型建筑设计合规性自动检查系统研究[J]. 图学学报, 2020, 41(03): 490-499. |
[30] |
刘迁, 焦慧, 贾惠波. 信息抽取技术的发展现状及构建方法的研究[J]. 计算机应用研究, 2007, 24(7): 6-9.doi: 10.3969/j.issn.1001-3695.2007.07.002 |
[31] |
Kim H, Lee J-K, Shin J, et al. Visual language approach to representing KBimCode-based Korea building code sentences for automated rule checking[J]. Journal of Computational Design and Engineering, 2019, 6(2): 143-148.doi: 10.1016/j.jcde.2018.08.002 |
[32] |
陈德鑫. 基于深度学习的在线医疗信息抽取研究[D]. 武汉: 武汉大学信息管理学院, 2017. |
[33] |
Dimyadi J, Amor R. Automating conventional compliance audit processes[C]//14th IFIP International Conference on Product Lifecycle Management. Seville: Springer, 2017, 324-334. |
[34] |
赵京胜, 宋梦雪, 高祥. 自然语言处理发展及应用综述[J]. 信息技术与信息化, 2019(7): 142-145.doi: 10.3969/j.issn.1672-9528.2019.07.046 |
[35] |
Dragoni M, Villata S, Rizzi W, et al. Combining NLP approaches for rule extraction from legal documents[C]//1st Workshop on MIning and REasoning with Legal texts. Sophia Antipolis: Springer, 2016. |
[36] |
Ismail A S, Ali K N, Iahad N A. A review on BIM-based automated code compliance checking system[C]//5th International Conference on Research and Innovation in Information System-Social Transformation through Data Science. Langkawi: IEEE, 2017, 1-6. |
[37] |
Luo H, Gong P. A BIM-based code compliance checking process of deep foundation construction plans[J]. Journal of Intelligent & Robotic Systems, 2015, 79(3-4): 549-576. |
[38] |
Solihin W, Eastman C M. A knowledge representation approach in BIM rule requirement analysis using the conceptual graph[J]. ITcon, 2016, 21: 370-401. |
[39] |
OASIS. OASIS LegalDocumentML(LegalDocML)TC[EB/OL]. [2020-09-01]. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=legaldocml. |
[40] |
Palmirani M, Governatori G, Rotolo A, et al. LegalRuleML: XML-based rules and norms[M]. Berlin: Springer, 2011, 298-312. |
[41] |
Zhang J, El-Gohary N. Automated information extraction from construction-related regulatory documents for automated compliance checking[C]//Proceedings of the 28th International Conference of CIB W. Sophia Antipolis: 2011, 1-10. |
[42] |
Zhang J, El-Gohary N. Extraction of construction regulatory requirements from textual documents using natural language processing techniques[C]//International Conference on Computing in Civil Engineering. Florida: 2012, 453-460. |
[43] |
Zhang J, El-Gohary N M. Automated information transformation for automated regulatory compliance checking in construction[J]. Journal of Computing in Civil Engineering, 2015, 29(4): B4015001.doi: 10.1061/(ASCE)CP.1943-5487.0000427 |
[44] |
Zhang J, El-Gohary N M. Semantic NLP-based information extraction from construction regulatory documents for automated compliance checking[J]. Journal of Computing in Civil Engineering, 2016, 30(2): 04015014.doi: 10.1061/(ASCE)CP.1943-5487.0000346 |
[45] |
Zhang J, El-Gohary N M. Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking[J]. Automation in construction, 2017, 73: 45-57.doi: 10.1016/j.autcon.2016.08.027 |
[46] |
Malsane S, Matthews J, Lockley S, et al. Development of an object model for automated compliance checking[J]. Automation in Construction, 2015, 49: 51-58.doi: 10.1016/j.autcon.2014.10.004 |
[47] |
Beach T H, Rezgui Y, Li H, et al. A rule-based semantic approach for automated regulatory compliance in the construction sector[J]. Expert Systems with Applications, 2015, 42(12): 5219-5231.doi: 10.1016/j.eswa.2015.02.029 |
[48] |
Li S, Cai H, Kamat V R. Integrating natural language processing and spatial reasoning for utility compliance checking[J]. Journal of Construction Engineering and Management, 2016, 142(12): 04016074.doi: 10.1061/(ASCE)CO.1943-7862.0001199 |
[49] |
Nyman D J, Fenves S J. Organizational model for design specifications[J]. Journal of the Structural Division, 1975, 101(4): 697-716.doi: 10.1061/JSDEAG.0004028 |
[50] |
Fenves S J, Wright R N, Stahl F I, et al. Introduction to sase: Standards analysis, synthesis, and expression[J]. National Technical Information Service, 1987, 473-490. |
[51] |
Pauwels P, Zhang S, Lee Y-C. Semantic web technologies in AEC industry: A literature overview[J]. Automation in Construction, 2017, 73: 145-165.doi: 10.1016/j.autcon.2016.10.003 |
[52] |
Pauwels P, de Farias T M, Zhang C, et al. A performance benchmark over semantic rule checking approaches in construction industry[J]. Advanced Engineering Informatics, 2017, 33: 68-88.doi: 10.1016/j.aei.2017.05.001 |
[53] |
Getuli V, Ventura S M, Capone P, et al. BIM-based code checking for construction health and safety[J]. Procedia engineering, 2017, 196: 454-461.doi: 10.1016/j.proeng.2017.07.224 |
[54] |
Hjelseth E, Nisbet N. Capturing normative constraints by use of the semantic mark-up RASE methodology[C]//Proceedings of CIB W78-W102 Conference. Sophia Antipolis: 2011, 1-10. |
[55] |
Zhou P, El-Gohary N. Ontology-based automated information extraction from building energy conservation codes[J]. Automation in Construction, 2017, 74: 103-117.doi: 10.1016/j.autcon.2016.09.004 |
[56] |
Zhong B, Gan C, Luo H, et al. Ontology-based framework for building environmental monitoring and compliance checking under BIM environment[J]. Building and Environment, 2018, 141: 127-142.doi: 10.1016/j.buildenv.2018.05.046 |
[57] |
Ghannad P, Lee Y-C, Dimyadi J, et al. Automated BIM data validation integrating open-standard schema with visual programming language[J]. Advanced Engineering Informatics, 2019, 40: 14-28.doi: 10.1016/j.aei.2019.01.006 |
[58] |
Xu X, Cai H, Chen K. Modeling 3D spatial constraints to support utility compliance checking[M]. Washington D.C. : American Society of Civil Engineers Reston VA, 2019, 439-446. |
[59] |
Sydora C, Stroulia E. Rule-based compliance checking and generative design for building interiors using BIM[J]. Automation in Construction, 2020, 120: 103368.doi: 10.1016/j.autcon.2020.103368 |
[60] |
Preidel C, Borrmann A. Refinement of the visual code checking language for an automated checking of building information models regarding applicable regulations[C]//Computing in Civil Engineering 2017. Seattle: American Society of Civil Engineers, 2017, 157-165. |
[61] |
Governatori G, Hashmi M, Lam H-P, et al. Semantic business process regulatory compliance checking using Legal-RuleML[M]. Cham: Springer, 2016, 746-761. |
[62] |
Dimyadi J, Solihin W, Eastman C, et al. Integrating the BIM rule language into compliant design audit processes[C]//Proceedings of the 33th CIB W78 International Conference. Brisbane: Science, 2016, 1-10. |
[63] |
Chipman T, Liebich T, Weise M. Specification of a standardized format to define and exchange Model View Definitions with Exchange Requirements and Validation Rules[EB/OL]. [2020-09-01]. https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf. |
[64] |
Park S, Lee Y-C, Lee J-K. Definition of a domain-specific language for Korean building act sentences as an explicit computable form[J]. Journal of Information Technology in Construction(ITcon), 2016, 21(26): 422-433. |
[65] |
Zhang C, Beetz J. Querying linked building data using SPARQL with functional extensions[C]//11th European Conference on Product and Process Modelling. Limassol: 2016. |
[66] |
Solihin W, Dimyadi J, Lee Y-C, et al. Simplified schema queries for supporting BIM-based rule-checking applications[J]. Automation in Construction, 2020, 117: 103248.doi: 10.1016/j.autcon.2020.103248 |
[67] |
余君, 陈涛, 王静, 等. 局部自动化的消防设计审查方法应用研究[J]. 消防科学与技术, 2017, 36(4): 559-561.doi: 10.3969/j.issn.1009-0029.2017.04.039 |
[68] |
Guo H, Y Yu, Zhang W, et al. BIM and safety rules based automated identification of unsafe design factors in construction[J]. Procedia engineering, 2016, 164: 467-472.doi: 10.1016/j.proeng.2016.11.646 |
[69] |
王诗旭. 基于BIM的规则检查技术辅助建筑设计方法研究——以四川大学华西医技楼项目为例[D]. 重庆: 重庆大学建筑城规学院, 2015. |
[70] |
胡培宁, 张金月. 基于BIM和Ontology的建筑防火设计自动审查的方法研究[J]. 工程管理学报, 2017(2): 49-53. |
[71] |
宫培松, 骆汉宾, 郭聖煜, 等. 基于BIM模型的深基坑工程施工方案自动图审[J]. 土木工程与管理学报, 2018(04): 94-101.doi: 10.3969/j.issn.2095-0985.2018.04.015 |
[72] |
孙澄宇, 柯勋. 建筑设计中BIM模型的自动规范检查方法研究[J]. 建筑科学, 2016, 32(4): 140-145. |
[73] |
辛文慧. 基于BIM的强制性条文数据库的建立及应用[D]. 重庆: 重庆大学土木工程学院, 2017. |
[74] |
刘洪, 辛文慧. 基于BIM实现构造配筋中规范条文自动化审查[J]. 工业建筑, 2017, 增刊Ⅲ: 651-654+661. |
[75] |
辛文慧, 华建民, 康明, 等. 基于BIM的强制性条文实施监管研究[J]. 工业建筑, 2017, 增刊Ⅲ: 461-464. |
[76] |
周涵. 支持BIM模型合规检查的语义方法研究[D]. 大连: 大连理工大学建设管理系, 2017. |
[77] | |
[78] |
穆磊, 王佳, 李继宝, 等. 基于BIM和知识图谱的消防智能审图研究[J]. 消防科学与技术, 2019, 38(12): 1765-1768.doi: 10.3969/j.issn.1009-0029.2019.12.035 |
[79] |
中华人民共和国住房和城乡建设部办公厅. 住房和城乡建设部办公厅关于同意深圳市开展建筑工程人工智能审图试点的复函[EB/OL]. [2020-09-01]. http://zfcj.gz.gov.cn/gkmlpt/content/6/6434/post_6434530.html. |
[80] |
姜韶华, 周涵. 支持建设行业合规性检查的语义方法[J]. 土木工程与管理学报, 2017, 34(5): 60-65.doi: 10.3969/j.issn.2095-0985.2017.05.010 |
[81] | |
[82] |
Zhang J, El-Gohary N M. Extending building information models semiautomatically using semantic natural language processing techniques[J]. Journal of Computing in Civil Engineering, 2016, 30(5): 2246-2253. |
[83] |
Lee D-Y, Chi H-L, Wang J, et al. A linked data system framework for sharing construction defect information using ontologies and BIM environments[J]. Automation in Construction, 2016, 68: 102-113.doi: 10.1016/j.autcon.2016.05.003 |
[84] |
De Farias T M, Roxin A, Nicolle C. A rule-based methodology to extract building model views[J]. Automation in Construction, 2018, 92: 214-229.doi: 10.1016/j.autcon.2018.03.035 |
[85] |
涂文博. 基于深度学习的医疗文本信息抽取[D]. 杭州: 杭州师范大学杭州国际服务工程学院, 2019. |
[86] |
李超. 基于深度学习的短文本分类及信息抽取研究[D]. 郑州: 郑州大学信息工程学院, 2017. |
[87] |
中国工程建设标准化协会. 关于对《文化旅游工程建筑信息模型应用标准》(征求意见稿)征求意见的函[EB/OL]. [2020-09-01]. http://www.cecs.org.cn/xhbz/zqyj/11171.html. |
[88] |
中国工程建设标准化协会. 关于发布《城市道路工程设计建筑信息模型应用规程》的公告[EB/OL]. [2020-09-01]. http://www.cecs.org.cn/xhbz/zqyj/11171.html. |
[89] |
湖南省住房和城乡建设厅. 关于公开征求《湖南省装配式建筑信息模型交付标准(征求意见稿)》意见的函[EB/OL]. [2020-09-01]. http://www.hunan.gov.cn/hnszf/hdjl/dczj/myzj/202006/t20200609_12323888.html. |
计量
- PDF下载量(47)
- 文章访问量(2300)
- HTML全文浏览量(907)