2023, 15(1): 49-54. doi: 10.16670/j.cnki.cn11-5823/tu.2023.01.09
绿化带简化模型在风环境仿真中的应用
北京构力科技有限公司,上海 200023 |
Application of the Canopy Simplification Model in Wind Environment Simulation
Beijing Glory PKPM Technology Co., Ltd., Shanghai 200023, China |
引用本文: 陈佳, 王梦林, 李京京, 龚智煌, 刘剑涛. 绿化带简化模型在风环境仿真中的应用[J]. 土木建筑工程信息技术, 2023, 15(1): 49-54. doi: 10.16670/j.cnki.cn11-5823/tu.2023.01.09
Citation: Jia Chen, Menglin Wang, Jingjing Li, Zhihuang Gong, Jiantao Liu. Application of the Canopy Simplification Model in Wind Environment Simulation[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2023, 15(1): 49-54. doi: 10.16670/j.cnki.cn11-5823/tu.2023.01.09
摘要:本文采用了一种新的绿化带模型进行阻力模拟计算,通过与常规的绿化带模拟方法进行对比,分析了两种不同的模拟方法对模拟结果的影响。首先对常规绿化带模型和新的绿化带模型的简化方式进行了简要说明,然后使用新的绿化带模拟方法建立了两个简化模型,再与常规的绿化带简化模型进行模拟计算对比,最后通过分析发现:使用新的绿化带模拟方法,可以设置与真实绿化带模型外形相似的LAD分布,能够获得更加合理的风场数据。
Abstract: In this paper, a new canopy simulation method is used for the analysis of the canopy drag. The comparation between the common and new canopy simulation method is made to obtained the different influence from their simulation results. Firstly, a brief description of the simplified method of the common and the new canopy simulation methods is given in this paper. Secondly, two simplified models are made by using the new canopy simulation method and then compared with a case made by the common canopy simulation method. After the analysis of the simulations, it is found that by using the new canopy simulation method, it is managed to set the real LAD distribution along the canopy height direction, and then a more reasonable wind field data can be obtained.
[1] |
B Dalpé, Masson C. Numerical simulation of wind flow near a forest edge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(5-6): 228-241.doi: 10.1016/j.jweia.2009.06.008 |
[2] |
Aliaksandr A, Stefan P, Romualda K, et al. Canopy Architecture and Yielding of Different Tomato Morphotypes Under Glasshouse Conditions[J]. Vegetable Crops Research Bulletin, 2009, 70(1): 49-58. |
[3] |
Mochida A, Tabata Y, Iwata T, et al. Examining tree canopy models for CFD prediction of wind environment at pedestrian level[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10-11): 1667-1677.doi: 10.1016/j.jweia.2008.02.055 |
[4] |
Molina-Aiz F D, Valera D L, A.J. álvarez, et al. A Wind Tunnel Study of Airflow through Horticultural Crops: Determination of the Drag Coefficient[J]. Biosystems Engineering, 2006, 93(4): 447-457.doi: 10.1016/j.biosystemseng.2006.01.016 |
[5] |
姚丹丹, 雷相东, 余黎, 等. 云冷杉针阔混交林叶面积指数的空间异质性[J]. 生态学报, 2015, 35(1): 71–79. |
[6] |
李亮, 李晓锋, 林波荣, 等. 用带源项k-ε两方程湍流模型模拟树冠流[J]. 清华大学学报(自然科学版), 2006, 46(6): 753–756.doi: 10.3321/j.issn:1000-0054.2006.06.001 |
[7] |
吴洋洋, 付海明. 树枝尺度的树冠气动特性风洞试验[J]. 东华大学学报(自然科学版), 2019, 45(4): 583–587, 595.doi: 10.3969/j.issn.1671-0444.2019.04.017 |
[8] |
杨会, 付海明. 树冠流动阻力特性数值模拟与实验研究[J]. 中南大学学报(自然科学版), 2016, 47(12): 4291–4299. |
[9] |
Gonçalves R, Linhares C, Yojo T. Drag coefficient in urban trees[J]. Trees, 2020: 1-13. |
[10] |
Segersson D. A tutorial to urban wind flow using OpenFOAM[J]. Proceedings of CFD with OpenSource Software, 2017. |
[11] |
Baker C J, Sterling M, Berry P. A generalised model of crop lodging[J]. Journal of theoretical biology, 2014, 363: 1-12.doi: 10.1016/j.jtbi.2014.07.032 |
[12] |
Li C, Wang J, Hu G, et al. RANS simulation of horizontal homogeneous atmospheric boundary layer over rough terrains by an enriched canopy drag model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104281. |
[13] |
Fahmy M, El-Hady H, Mahdy M. LAI and Albedo measurements based methodology for numerical simulation of urban tree' s microclimate: A case study in Egypt[J]. Int. J. Sci. Eng. Res, 2016, 7: 790-797. |
[14] |
Hosoi F, Omasa K. Detecting seasonal change of broadleaved woody canopy leaf area density profile using 3D portable LIDAR imaging[J]. Functional Plant Biology, 2009, 36(11): 998-1005. |
[15] |
Gromke C, Blocken B, Janssen W, et al. CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands[J]. Building and environment, 2015, 83: 11-26. |
[16] |
Miao H, Gopalan H, Raghavan V, et al. Computational Fluid Dynamics simulation of wind flow and wind force on trees in urban parks[C]//8th International Colloquium on Bluff Body Aerodynamics and Applications. 2016. |
计量
- PDF下载量(18)
- 文章访问量(1162)
- HTML全文浏览量(1381)