2023, 15(3): 39-45. doi: 10.16670/j.cnki.cn11-5823/tu.2023.03.07
数字孪生技术在建筑火灾安全评估与改造中的应用研究
1. | 北京科技大学土木与资源工程学院, 北京 100083 |
2. | 中规院(北京)规划设计有限公司, 北京 100044 |
A Case on Fire Safety Assessment and Retrofit of Buildings Using Digital Twin Framework
1. | University of Science and Technology Beijing, School of Civil and Resource Engineering, Beijing 100083, China |
引用本文: 王英旺, 李利, 吴莹莹, 唐禧妍, 范晶晶, 许镇. 数字孪生技术在建筑火灾安全评估与改造中的应用研究[J]. 土木建筑工程信息技术, 2023, 15(3): 39-45. doi: 10.16670/j.cnki.cn11-5823/tu.2023.03.07
Citation: Yingwang Wang, Li Li, Yingying Wu, Xiyan Tang, Jingjing Fan, Zhen Xu. A Case on Fire Safety Assessment and Retrofit of Buildings Using Digital Twin Framework[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2023, 15(3): 39-45. doi: 10.16670/j.cnki.cn11-5823/tu.2023.03.07
摘要:数字孪生技术可建立现实对象与数字模型的精确对应关系, 进而开展基于真实数据的仿真, 以指导现实对象改进。以北京科技大学土木楼为例, 开展了基于数字孪生架构的建筑火灾安全评估与改造的研究。首先, 利用建筑信息建模(BIM)、物联网(IoT)和云技术(cloud technology), 并集成了风速、人数等实时感知数据, 建立了土木楼的数字孪生模型; 其次, 利用数字孪生模型, 开展基于实测数据的火灾蔓延与人员疏散模拟, 并与基于传统估计数据的模拟结果进行了比较; 最后, 根据模拟结果, 提出了建筑火灾安全的改进方案, 并评测了改进方案的效果, 为建筑消防安全改造提供了准确依据。结果表明: 数字孪生架构下的火灾安全评估结果更接近实际, 可以指导建筑火灾安全改造。
Abstract: Digital Twin can establish an accurate correspondence between actual objects and digital models, so that digital analysis can be performed based on data to guide the improvement of the objects. Taking the civil engineering building at University of Science and Technology Beijing as an example, the fire safety assessment of the building and retrofit was implemented on the basis of digital twin framework. Firstly, Building Information Modeling (BIM), Internet of Things (IoT), and Cloud technology are employed to collect and integrate the real-time sensing data (e.g., wind speed and number of people) and thus establish a digital twin model of the civil building. Secondly, the simulations on fire and evacuation by using sensing data are performed under the digital twin model, and results processed by traditional estimated data are compared. Finally, the paper proposes the retrofit plans of building fire safety and retrofit effects are tested according to the results above, which provides accurate references for building fire safety retrofit. Moreover, the results in the paper note that the results of the fire safety assessment by using the digital twin framework are closer to reality, hence it can guide building fire safety retrofit.
[1] |
GRIEVES M. Digital Twin: Manufacturing excellence through virtual factory replication[R/OL]. [2015-01-01]. |
[2] |
中国科协发布2020重大科学问题和工程技术难题(续)[J]. 设备管理与维修, 2020, (23): 8. |
[3] |
SINGH M, FUENMAYOR E, HINCHY E P, et al. Digital Twin: Origin to Future[J]. Applied System Innovation, 2021, 4(2). |
[4] |
KHAJAVI S H, MOTLAGH N H, JARIBION A, et al. Digital Twin: Vision, benefits, boundaries, and creation for buildings[J]. IEEE Access, 2019, 7: 147406-19.doi: 10.1109/ACCESS.2019.2946515 |
[5] |
LU Q, PARLIKAD A K, WOODALL P, et al. Developing a dynamic digital twin at building and city levels: A case study of the West Cambridge campus[J]. Journal of Management in Engineering, 2019, 36(3). |
[6] |
AngJeliu G, Coronelli D, CARDANi G. Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality[J]. Computers & Structures, 2020, 238. |
[7] |
MODENA C, DA PORTO F, VALLUZZI M. Brick and Block Masonry: Proceedings of the 16th International Brick and Block Masonry Conference[J]. 2016: 26-30. |
[8] |
JOHANSSON N, EKHOLM M. Variation in results due to user effects in a simulation with FDS[J]. Fire Technology, 2018, 54(1): 1-20.doi: 10.1007/s10694-018-0702-6 |
[9] |
AL-WAKED R, NASIF M, GROENHOUT N, et al. Natural ventilation of residential building Atrium under fire scenario[J]. Case Studies in Thermal Engineering, 2021, 26: 101041.doi: 10.1016/j.csite.2021.101041 |
[10] | |
[11] |
孙少华. 高层住宅公寓火灾发展与人员疏散模拟研究[D]. 江苏: 中国矿业大学, 2021. |
[12] |
刘如山, 颜冬启, 越潇, 等. 用于地震救援指引的重点目标人员密度研究[J]. 地震工程与工程震动, 2014, 34(S1): 1077-82. |
[13] |
建筑防烟排烟系统技术标准: GB 51251-2017[S]. 北京: 中国计划出版社, 2018. |
[14] |
ZHAO G, BEJI T, MERCI B. Study of FDS simulations of buoyant fire-induced smoke movement in a high-rise building stairwell[J]. Fire Safety Journal, 2017, 91: 27683. |
[15] |
HIDALGO J P, MALUK C, COWLARD A, et al. A Thin Skin Calorimeter (TSC) for quantifying irradiation during large-scale fire testing[J]. International Journal of Thermal Sciences, 2017, 112: 383-94.doi: 10.1016/j.ijthermalsci.2016.10.013 |
[16] |
刘晓, 蔡治勇, 马胜杰, 等. 基于FDS的高层建筑火灾数值模拟研究[J]. 价值工程, 2019, 38(31): 3. |
[17] |
JUKKA, HIETANIEMI, RAIJA, et al. Burning characteristics of selected substances: production of heat, smoke and chemical species[J]. Fire Materials, 1999, 23(4): 171-85.doi: 10.1002/(SICI)1099-1018(199907/08)23:4<171::AID-FAM680>3.0.CO;2-C |
[18] |
霍然, 金旭辉, 梁文. 大型公用建筑火灾中人员疏散的模拟计算分析[J]. 火灾科学, 1999, 8(2): 8-13. |
[19] |
于恒. 基于火灾动力学与人群疏散模拟的地铁车站火灾安全疏散问题研究[D]. 广州: 华南理工大学, 2020. |
[20] |
朱杰, 夏锐, 唐家祥, 等. 某高层建筑商业中心火灾风险评估及人员疏散研究[J]. 消防科学与技术, 2008, 27(8): 4. |
[21] |
中华人民共和国公安部. GB 50016-2014建筑设计防火规范[S]. 北京: 中国计划出版社, 2014. |
[22] |
胡鲲. 认识最新的消防安全标志——GB13495.1-2015 《消防安全标志第1部分: 标志》实施[J]. 中国质量与标准导报, 2015, 000(010): 28-32. |
计量
- PDF下载量(46)
- 文章访问量(2751)
- HTML全文浏览量(912)