• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

2024, 16(2): 1-11. doi: 10.16670/j.cnki.cn11-5823/tu.2024.02.01

纤维缠绕建造技术的研究与展望

1. 

华中科技大学 国家数字建造技术创新中心,武汉 430074

2. 

华中科技大学 土木与水利工程学院,武汉 430074

通讯作者: 周诚,

网络出版日期: 2024-04-20

作者简介: 李雄彬(1999-),男,在读硕士研究生,主要研究方向:月面原位建造

基金项目: 国家重点研发计划课题 2021YFF0500300

Research and Prospect on Filament Winding Construction Technology

1. 

National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: Cheng Zhou,

Available Online: 2024-04-20

引用本文: 李雄彬, 周燕, 周诚. 纤维缠绕建造技术的研究与展望[J]. 土木建筑工程信息技术, 2024, 16(2): 1-11. doi: 10.16670/j.cnki.cn11-5823/tu.2024.02.01

Citation: Xiongbin Li, Yan Zhou, Cheng Zhou. Research and Prospect on Filament Winding Construction Technology[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2024, 16(2): 1-11. doi: 10.16670/j.cnki.cn11-5823/tu.2024.02.01

摘要:纤维缠绕建造技术是一种以无芯纤维缠绕技术为基础,采用自主建造机器人来实现大尺寸纤维缠绕结构及其构件的快速、准确和自动化建造的新型技术。本文针对纤维缠绕技术具有扩展到大尺寸建筑及其构件建造的潜力,首先重点介绍了纤维缠绕技术的基本原理、材料系统、机械设备和关键技术,其次梳理和归纳了这一新型建造技术在建筑施工领域中的应用,最后进一步探索和展望纤维缠绕建造技术的未来发展方向。

关键词: 纤维缠绕建造技术, 纤维增强复合材料, 纤维缠绕, 无芯纤维缠绕, 空间纤维缠绕
[1]

Erden S, Ho K. Fiber reinforced composites[M]//Fiber Technology for Fiber-Reinforced Composites. Woodhead Publishing, 2017: 51-79.

[2]

Bhatt A T, Goh il P P, Chaudhary V. Primary manufacturing processes for fiber reinforced composites: History, development & future research trends[C]//IOP conference series: materials science and engineering. IOP Publishing, 2018, 330(1): 012107.

[3]

宋绪丁, 庞利沙. 碳纤维树脂基复合材料及成型工艺与应用研究进展[J]. 包装工程, 2021, 42(14): 81-91. 

[4]

谢霞, 邱冠雄, 姜亚明. 纤维缠绕技术的发展及研究现状[J]. 天津工业大学学报, 2004(06): 19-22+29. 

[5]

Azeem M, Ya H H, Kumar M, et al. Application of filament winding technology in composite pressure vessels and challenges: a review[J]. Journal of Energy Storage, 2022, 49: 103468.doi: 10.1016/j.est.2021.103468

[6]

王巧玲, 魏栋, 李光俊, 等. FRP复合材料管材航空应用及成型技术研究现状[J]. 航空制造技术, 2020, 63(22): 92-101. 

[7]

Skinner M L. Tren ds, Advances and innovations in filament winding[J]. Reinforced Plastics, 2006, 50(2): 28-33.doi: 10.1016/S0034-3617(06)70912-2

[8]

王瑛琪, 盖登宇, 宋以国. 纤维缠绕技术的现状及发展趋势[J]. 材料导报, 2011, 25(05): 110-113. 

[9]

Qua njin M, Rejab M R M, Idris M S, et al. Filament winding technique: SWOT analysis and applied favorable factors[J]. SCIREA Journal of Mechanical Engineering, 2019, 3(1): 1-25.

[10]

Ansari S M, Ghazali C M R, Husin K. Natural fiber filament wound composites: a review[C]//MATEC web of conferences. EDP Sciences, 2017, 97: 01018.

[11]

Shrigandhi G D, Kothavale B S. Biodegradable composites for filament winding process[J]. Materials Today: Proceedings, 2021, 42: 2762-2768.doi: 10.1016/j.matpr.2020.12.718

[12]

刘美军. 植物纤维缠绕复合材料成型机理及其优化研究[D]. 哈尔滨理工大学, 2020.

[13]

闫清峰, 张纪刚. 纤维增强复合材料在土木工程中的应用与发展[J]. 科学技术与工程, 2021, 21(36): 15314-15322. 

[14]

司翔, 曾少敏, 刘汝超, 等. 纤维材料在高层建筑中的应用现状与发展方向[J]. 合成纤维, 2022, 51(10): 41-44+71. 

[15]

苏亚欣. 纤维复合材料在土木建筑工程中的应用研究[J]. 合成材料老化与应用, 2022, 51(02): 154-156. 

[16]

丁毅峰. 各向异性结构复合材料的数字化设计建造研究[D]. 北方工业大学, 2022.

[17]

Quanjin M, Rejab M, Idris M, et al. Robotic filament winding technique (RFWT) in industrial application: A review of state of the art and future perspectives[J]. Int. Res. J. Eng. Technol, 2018, 5(12): 1668-1676.

[18]

Sorrentino L, Anamat eros E, Bellini C, et al. Robotic filament winding: An innovative technology to manufacture complex shape structural parts[J]. Composite Structures, 2019, 220: 699-707.doi: 10.1016/j.compstruct.2019.04.055

[19]

杨海. 复合材料纤维缠绕机器人关键技术研究[D]. 哈尔滨理工大学, 2020.

[20]

Knippers J, La Ma gna R, Menges A, et al. ICD/ITKE research pavilion 2012: coreless filament winding based on the morphological principles of an arthropod exoskeleton[J]. Architectural Design, 2015, 85(5): 48-53.doi: 10.1002/ad.1953

[21]

Dörstelmann M, Kni ppers J, Menges A, et al. ICD/ITKE Research Pavilion 2013‐14: Modular Coreless Filament Winding Based on Beetle Elytra[J]. Architectural Design, 2015, 85(5): 54-59.doi: 10.1002/ad.1954

[22]

Dörstelmann M, Knippers J, Koslowski V, et al. ICD/ITKE research pavilion 2014–15: Fibre placement on a pneumatic body based on a water spider web[J]. Architectural Design, 2015, 85(5): 60-65.doi: 10.1002/ad.1955

[23]

La Magna R, Waimer F, Knippers J. Coreless Winding and Assembled Core–Novel fabrication approaches for FRP based components in building construction[J]. Construction and Building Materials, 2016, 127: 1009-1016.doi: 10.1016/j.conbuildmat.2016.01.015

[24]

Duque Estrada R, Kannenberg F, Wagner H J, et al. Spatial winding: cooperative heterogeneous multi-robot system for fibrous structures[J]. Construction Robotics, 2020, 4: 205-215.doi: 10.1007/s41693-020-00036-7

[25]

Yang X, Lehreck e A, Tucker C, et al. Spatial Lacing: A Novel Composite Material System for Fibrous Networks[C]//Towards Radical Regeneration: Design Modelling Symposium Berlin 2022. Cham: Springer International Publishing, 2022: 556-568.

[26]

Koslowski V, So lly J, Knippers J. Structural design methods of component based lattice composites for the Elytra Pavilion[C]//Proceedings of the IASS Annual Symposium. 2017.

[27]

Felbrich B, Frueh N, Prado M, et al. Multi-machine fabrication: an integrative design process utilising an autonomous UAV and industrial robots for the fabrication of long-span composite structures[C]//Acadia 2017 Disciplines & Disruption: Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture. 2017: 248-259.

[28]

Dambrosio N, Zechmei ster C, Bodea S, et al. Buga Fibre Pavilion: Towards an architectural application of novel fiber composite building systems[C]//Acadia. 2019: 140-149.

[29]

Pérez M G, Früh N, La Magna R, e t al. Integrative structural design of a timber-fibre hybrid building system fabricated through coreless filament winding: Maison Fibre[J]. Journal of Building Engineering, 2022, 49: 104114.doi: 10.1016/j.jobe.2022.104114

[30]

Pérez M G, Guo Y, Knippers J. Integrative material and structural design methods for natural fibres filament-wound composite structures: The LivMatS pavilion[J]. Materials & Design, 2022, 217: 110624.

[31]

Reichert S, Schwinn T, La Magna R, et al. Fibrous structures: An integrative approach to design computation, simulation and fabrication for lightweight, glass and carbon fibre composite structures in architecture based on biomimetic design principles[J]. Computer-Aided Design, 2014, 52: 27-39.doi: 10.1016/j.cad.2014.02.005

[32]

PÉREZ M G I L, ZECHMEISTER C, MENGES A, et al. Coreless filament-wound structures: Toward performative long-span and sustainable building systems[J]. 2022.

[33]

Mindermann P, Gil Pérez M, Knippers J, et al. Investigation of the fabrication suitability, structural performance, and sustainability of natural fibers in coreless filament winding[J]. Materials, 2022, 15(9): 3260.doi: 10.3390/ma15093260

[34]

Costalonga Martins V, Cutajar S, van der Hoven C, et al. FlexFlax stool: validation of moldless fabrication of complex spatial forms of natural fiber-reinforced polymer (NFRP) structures through an integrative approach of tailored fiber placement and coreless filament winding techniques[J]. Applied Sciences, 2020, 10(9): 3278.doi: 10.3390/app10093278

[35]

Göbert A, Deetman A, Rossi A, et al. 3DWoodWind: robotic winding processes for matrial-efficient lightweight veneer components[J]. Construction Robotics, 2022, 6(1): 39-55.doi: 10.1007/s41693-022-00067-2

[36]

Prado M, Dö rstelmann M, Solly J, et al. Elytra filament pavilion: Robotic filament winding for structural composite building systems[C]//Fabricate 2017: rethinking design and construction. UCLPress, 2017: 224-231.

[37]

Mindermann P, Bodea S, Menges A, et al. Development of an impregnation end-effector with fiber tension monitoring for robotic coreless filament winding[J]. Processes, 2021, 9(5): 806.doi: 10.3390/pr9050806

[38]

Bodea S, Mindermann P, Gresser G T, et al. Additive manufacturing of large coreless filament wound composite elements for building construction[J]. 3D Printing and Additive Manufacturing, 2022, 9(3): 145-160.doi: 10.1089/3dp.2020.0346

[39]

Mindermann P, Rongen B, Gubetini D, et al. Material monitoring of a composite dome pavilion made by robotic coreless filament winding[J]. Materials, 2021, 14(19): 5509.doi: 10.3390/ma14195509

[40]

Xin Z, Lu o D, Zhu G, et al. Adaptive robotic fiber winding system for multiple types of optimized structural components[J]. 2022.

[41]

Vasey L, Felbri ch B, Prado M, et al. Physically distributed multi-robot coordination and collaboration in construction: A case study in long span coreless filament winding for fiber composites[J]. Construction Robotics, 2020, 4(1-2): 3-18.doi: 10.1007/s41693-020-00031-y

[42]

Yablonina M, Prado M, Baharlou E, et al. Mobile robotic fabrication system for filament structures[J]. Fabricate: Rethinking Design and Construction, 2017, 3: 202-209.

[43]

Yablonina M, Menges A. Towards the development of fabrication machine species for filament materials[C]//Robotic Fabrication in Architecture, Art and Design 2018: Foreword by Sigrid Brell-Çokcan and Johannes Braumann, Association for Robots in Architecture. Springer International Publishing, 2019: 152-166.

[44]

Kayser M, Cai L, Falcone S, et al. FIBERBOTS: an autonomous swarm-based robotic system for digital fabrication of fiber-based composites[J]. Construction Robotics, 2018, 2: 67-79.doi: 10.1007/s41693-018-0013-y

[45]

Kayser M, Cai L, Falcone S, et al. Design of a multi-agent, fiber composite digital fabrication system[J]. Science Robotics, 2018, 3(22): eaau5630.doi: 10.1126/scirobotics.aau5630

[46]

Moritz Dörstelmann M, Prado M, Parascho S, et al. Integrative computational design methodologies for modular architectural fiber composite morphologies[J]. 2014.

[47]

Prado M, Dörstelmann M, Schwinn T, et al. Core-Less Filament Winding: Robotically Fabricated Fiber Composite Building Components[J]. Robotic fabrication in architecture, art and design 2014, 2014: 275-289.

[48]

Prado M. Skeletal composites: Robotic fabrication processes for lightweight multi-nodal structural components[J]. Construction Robotics, 2020, 4(3-4): 217-226.doi: 10.1007/s41693-020-00047-4

[49]

Gil Pérez M, Zechmeister C, Kannenberg F, et al. Computational co-design framework for coreless wound fibre–polymer composite structures[J]. Journal of Computational Design and Engineering, 2022, 9(2): 310-329.doi: 10.1093/jcde/qwab081

[50]

Guo Y, Pérez M G, Serhat G, et al. A design methodology for fiber layup optimization of filament wound structural components[C]//Structures. Elsevier, 2022, 38: 1125-1136.

[51]

Zechmeister C, Bodea S, Dambrosio N, et al. Design for long-span core-less wound, structural composite building elements[C]//Impact: Design With All Senses: Proceedings of the Design Modelling Symposium, Berlin 2019. Springer International Publishing, 2020: 401-415.

[52]

Perez M G, Rongen B, Koslowski V, et al. Structural design assisted by testing for modular coreless filament-wound composites: The BUGA Fibre Pavilion[J]. Construction and Building Materials, 2021, 301: 124303.doi: 10.1016/j.conbuildmat.2021.124303

[53]

Solly J, Früh N, Saffarian S, et al. Structural design of a lattice composite cantilever[C]//Structures. Elsevier, 2019, 18: 28-40.

计量
  • PDF下载量(34)
  • 文章访问量(893)
  • HTML全文浏览量(533)
目录

Figures And Tables

纤维缠绕建造技术的研究与展望

李雄彬, 周燕, 周诚

  • 版权所有© 《土木建筑工程信息技术》编辑部
  • 京ICP备17057008号
  • 地址:北京市朝阳区兴化路2号院1号楼
  • 电话:010-64517910 邮编:100013
  • 微信号:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn
本系统由北京仁和汇智信息技术有限公司设计开 技术支持: info@rhhz.net