2011, 3(2): 21-25.
基于经典粗糙集约简方法的高层结构智能方案设计
南阳理工学院,南阳 473004 |
High-rise Structure of Intelligent Scheme Design Based on Classical Rough Set Reduction Method
Nanyang Institute of Technology, Nanyang 473004, China |
引用本文: 张世忠, 段慧杰, 张世海. 基于经典粗糙集约简方法的高层结构智能方案设计[J]. 土木建筑工程信息技术, 2011, 3(2): 21-25.
Citation: Zhang Shizhong, Duan Huijie, Zhang Shihai. High-rise Structure of Intelligent Scheme Design Based on Classical Rough Set Reduction Method[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2011, 3(2): 21-25.
摘要:首先,介绍了经典粗糙集理论的9个基本概念及约简算法的分类,给出了基于经典粗糙集约简方法的结构方案设计思想与过程;其次,以高层结构实例为背景,给出了基于经典粗糙集理论约简算法的结构方案设计实例,为结构智能方案设计开拓了新的途径和方法。实践表明,与传统不精确性问题处理方法相比,利用粗糙集进行结构方案设计问题不确定信息处理,有着传统方法所不具有的优点。
Abstract: Firstly, the basic concepts of the 10 reduction algorithm and the classification of classical rough set theory is introduced, the structure scheme design process based on classical method of rough set reduction is given; Secondly, according to high-rise structure example, the structural design method is given based on classical rough set reduction algorithm, it develops a new approach and method for the structure intelligent design. Practice shows that comparing with the traditional methods to treat the inaccuracy problem, it has the advantages the traditional method does not have to use rough set to solve the structural design problems with uncertain information processing.
[1] |
张世海. 高层建筑结构智能方案设计方法研究[R]. 哈尔滨工业大学博士后研究报告, 2009. |
[2] |
Pawlak Z. Rough sets. International Journal of Computer and Information Science[J].1982, 11(5): 341-356.doi: 10.1007/BF01001956 |
[3] |
张文修, 吴伟业.粗糙集理论与方法[M].科学出版社, 2001. |
[4] |
苗夺谦, 李道国.粗糙集理论、算法与应用[M].清华大学出版社, 2008: 24-81. |
[5] |
安利平.基于粗糙集理论的多属性决策分析[M].科学出版社, 2008: 16-24. |
[6] |
张世海, 刘晓燕等.基于决策树的高层结构智能选型知识发现[J].哈尔滨工业大学学报, 2005, 37(4):451-454. |
[7] |
Shihai Zhang, Shujun Liu, Jinping Ou, Guangyuan Wang. C4.5-based Classification Rules Mining of High-rise Building SFIO[A]. The 4rd International Conference on Natural Computation (ICNC'08) and The 5th International Conference on Fuzzy Systems and Knowledge Discovery(FSKD'08)[C]. Publishend by the IEEE Computer Society Press, Los Alamitos, California Washington Tokyo. FSKD'2008(4): 467-472. |
计量
- PDF下载量(7)
- 文章访问量(949)
- HTML全文浏览量(706)