2022, 14(4): 41-47. doi: 10.16670/j.cnki.cn11-5823/tu.2022.04.07
杭州西站大跨屋盖钢结构三维激光扫描变形监测技术
1. | 中铁建工集团有限公司, 北京 100160 |
2. | 浙江精工钢结构集团有限公司, 绍兴 312030 |
3D Laser Scanning in Deformation Monitoring for Large Span Roof Steel Structure of Hangzhouxi Railway Station
1. | China Railway Construction Engineering Group, Beijing 100160, China |
2. | Zhejiang Jinggong Steel Building Group Co., Ltd., Shaoxing 312030, China |
引用本文: 杜理强, 邹海涛, 童宇超, 许华姣. 杭州西站大跨屋盖钢结构三维激光扫描变形监测技术[J]. 土木建筑工程信息技术, 2022, 14(4): 41-47. doi: 10.16670/j.cnki.cn11-5823/tu.2022.04.07
Citation: Liqiang Du, Haitao Zou, Yuchao Tong, Huajiao Xu. 3D Laser Scanning in Deformation Monitoring for Large Span Roof Steel Structure of Hangzhouxi Railway Station[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2022, 14(4): 41-47. doi: 10.16670/j.cnki.cn11-5823/tu.2022.04.07
摘要:杭州西站屋盖钢结构整体为双曲造型,体量较大,常规监测方法无法满足现场快速、全面的结构变形监测要求。为实现杭州西站项目高精度、高效率和全过程的变形监测,采用三维激光扫描获取结构建造全过程的点云数据,将点云数据处理后与BIM模型配准,完成单构件偏差分析、施工过程和成形态结构偏差分析,实现建造全过程的变形监测。监测结果与全站仪测量数据对比表明,三维扫描变形监测与全站仪测量的数据值及标准差基本一致,数据波动较小,监测结果稳定,适用于大型空间钢结构项目建造全过程的变形监测。
Abstract: The steel hyperbolic roof of Hangzhouxi Railway Station is of large volume. The conventional monitoring methods cannot meet the requirements in terms of speed and comprehensiveness. In order to realize high-precision, high-efficiency, and whole process deformation monitoring of Hangzhouxi Railway Station, 3D laser scanning is used to obtain the whole-process point cloud data. The processed point cloud data is registered with the BIM model to analyze the deviation of single component, construction process and morphological structure, so as to realize the whole-process deformation monitoring. The comparison with the measured data of the total station shows that the 3D scanning deformation monitoring is basically consistent with the data value and standard deviation measured by the total station, the data fluctuation is small, and the monitoring results are stable. It is suitable for the whole-process deformation monitoring of large space steel structure projects.
[1] |
付洋杨, 吕彦雷. 三维激光扫描虚拟预拼装技术在钢结构工程上的应用分析[J]. 中国建筑金属结构, 2020(04): 45-47.doi: 10.3969/j.issn.1671-3362.2020.04.008 |
[2] |
杜希建. 建筑物三维激光点云数据配准及建模研究[D]. 长安大学, 2016. |
[3] |
王一峰. 三维激光扫描技术在世茂深坑酒店异形钢结构变形监测中的应用[J]. 施工技术, 2017, 46(16): 114-116. |
[4] |
何敏杰, 赵切, 王强强, 等. 某大型薄壁组合型箱体剪力墙—柱体系预拼装模拟研究[J]. 建筑钢结构进展, 2019, 21(05): 108-115. |
[5] |
骆鹏飞, 王强强, 赵切, 等. 北京新机场旅客航站楼及综合换乘中心钢结构工程BIM应用[J]. 土木建筑工程信息技术, 2019, 11(02): 1-5. |
[6] |
孟玲霄, 卢继, 唐嘉佳, 等. 钢结构预拼装成本控制数学模型分析[J]. 建筑钢结构进展, 2019, 21(06): 129-134. |
[7] |
程笑, 冯国军, 樊警雷. 基于BIM技术的复杂建筑结构三维激光扫描验收[J]. 施工技术, 2019, 48(S1): 369-371. |
[8] |
梁建军, 范百兴, 邓向瑞, 等. 三维激光扫描仪球形靶标测量方法与精度评定[J]. 工程勘察, 2011, 39(02): 81-84. |
[9] |
梁严. 三维激光扫描点云数据精简及建模应用研究[D]. 中国矿业大学, 2020. |
[10] |
索俊锋, 刘勇, 蒋志勇, 等. 基于三维激光扫描点云数据的古建筑建模[J]. 测绘科学, 2017, 42(03): 179-185. |
计量
- PDF下载量(34)
- 文章访问量(1679)
- HTML全文浏览量(794)