2024, 16(2): 29-33. doi: 10.16670/j.cnki.cn11-5823/tu.2024.02.05
基于BIM和知识图谱的自动审查方法
1. | 西南交通大学 土木工程学院,成都 610031 |
2. | 四川省建筑设计研究院有限公司,成都 610031 |
3. | 中国建筑西南设计研究院有限公司,成都 610031 |
An Automated Compliance Checking Method Based on BIM and Knowledge Graph
1. | School of Civil engineering, Southwest Jiao tong University, Chengdu 610031, China |
2. | Sichuan Provincial Architectural Design and Research Institute Co., Ltd., Chengdu 610031, China |
3. | China Southwest Architecture, Chengdu 610031, China |
引用本文: 龙丹冰, 雷昕, 王初翀, 方长建, 康永君. 基于BIM和知识图谱的自动审查方法[J]. 土木建筑工程信息技术, 2024, 16(2): 29-33. doi: 10.16670/j.cnki.cn11-5823/tu.2024.02.05
Citation: Danbing Long, Xin Lei, Chuchong Wang, Changjian Fang, Yongjun Kang. An Automated Compliance Checking Method Based on BIM and Knowledge Graph[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2024, 16(2): 29-33. doi: 10.16670/j.cnki.cn11-5823/tu.2024.02.05
摘要:本文在设计合规性审查中引入知识图谱技术,提出以规范知识图谱为核心的自动审查系统。通过对中国规范及结构设计规则(以下统称为规范)分析,提出面向规范最小语义单元的规范知识图谱元结构,建立了反映建筑规范复杂语义逻辑元结构的链接规则,进而以元结构为基元提出了规范知识图谱的构建方法。通过从图谱中获取数据,驱动代码生成模块自动生成用于信息检索和审查的可执行规范审查代码,可实现BIM模型的自动审查。
Abstract: The present paper applies knowledge graph technology to design compliance checking, and proposes an Automatic Compliance Checking (ACC) system based on standard knowledge graph. Through analyzing Chinese standards and structural design rules (hereinafter collectively referred to as standards), the atomic structure of knowledge graph for the minimum semantic unit is created, and some rules for linking the atomic structures are developed, thus establishing a method for constructing a building standard knowledge graph (BSKG) with the atomic structure as basic-element. By applying data from the graph to the data-driven code generation module, the executable codes for both information retrieval and compliance checking can be automatically generated, thus enabling BIM model's compliance checking to be automatically conducted.
[1] |
《建筑工程质量管理条例》[M], 2000. |
[2] |
Eastman. C, Lee. J, Jeong. Y, Automatic rule-based checking of building designs, Automation in Construction. 18 (2009) 1011–1033. |
[3] |
Guo D, Onstein E, La Rosa A D. A Semantic Approach for Automated Rule Compliance Checking in Construction Industry[J]. IEEE Access, 2021, 9: 129648-129660.doi: 10.1109/ACCESS.2021.3108226 |
[4] |
CoreNet. Essential Suite (ESS). Corenet e-submission system[EB/OL]. [2023-04-20]. |
[5] |
Hjelseth E. Foundation for development of computable rules[J]. Managing IT in Construction/Managing Construction for Tomorrow, 2009: 257 |
[6] |
Zhang J, El-Gohary N M. Automated information transformation for automated regulatory compliance checking in construction[J]. Journal of Computing in Civil Engineering, 2015, 29(4): B4015001.doi: 10.1061/(ASCE)CP.1943-5487.0000427 |
[7] |
Zhou Y, Lin J, She Z. Automatic Construction of Building Code Graph for Regulation Intelligence[M]//ICCREM 2021. 248-254. Zhang J, El-Gohary N M. Integrating semantic NLP and logic reasoning into a unified system for fully-automated code checking[J]. Automation in construction, 2017, 73: 45-57. |
[8] |
Solibri. Solibri Model Checker[EB/OL]. [2023-04-20]. |
[9] |
Hayan Kim, Jin-Kook Lee, Jaeyoung Shin, Jungsik Choi, Visual language approach to representing KBimCode-based Korea building code sentences for automated rule checking, Journal of Computational Design and Engineering, Volume 6, Issue 2, April 2019, Pages 143–148. |
[10] |
W. Solihin, C. Eastman, A Knowledge Represehtation Approach in BIM rule Re-quirement analysis using the conceptual graph. 21 (2016) 370-401. |
计量
- PDF下载量(44)
- 文章访问量(1887)
- HTML全文浏览量(501)