Citation: Zhouhu Wu. Equations, Geometric Characteristics and Application Prospects of Several New Types of Heteromorphic Ellipsoid Surfaces. Journal of Information Technologyin Civil Engineering and Architecture, 2023, 15(6): 39-45. doi: 10.16670/j.cnki.cn11-5823/tu.2023.06.07
2023, 15(6): 39-45. doi: 10.16670/j.cnki.cn11-5823/tu.2023.06.07
Equations, Geometric Characteristics and Application Prospects of Several New Types of Heteromorphic Ellipsoid Surfaces
School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China |
Taking the heteromorphic ellipse and the ellipse as basic figures, this paper defines three independent parameters, i.e. the half-length, half-width, and half-height to establish conditions and definition intervals for five new types of heteromorphic ellipsoid surfaces. The equations of types Ⅲ–Ⅶ heteromorphic ellipsoid surfaces are established through the analytic geometrical method. The geometric characteristics of the five types of heteromorphic ellipsoid surfaces are as follows: the cross-sections on the parallel plane yOz form a heteromorphic ellipse, the contours in the top view form an ellipse or a heteromorphic ellipse, and curves of the profile on the coordinate plane xOz form an ellipse, a semi-heteromorphic ellipse, or a semi-ellipse. The analysis showed that types Ⅲ, Ⅴ, and Ⅶ heteromorphic ellipsoid surfaces have double-symmetry planes, while types Ⅳ and type Ⅵ have single-symmetry planes. The contours of the top view of types Ⅵ and Ⅶ of the heteromorphic ellipsoid surfaces coincides with the xOy profile. The volumes of parts above the contours in the top views of types Ⅲ–Ⅶ heteromorphic ellipsoids accounted for 60.83% of their respective total volumes. These new types of heteromorphic ellipsoid surfaces can be used broad application prospects in the design of special construction projects, floating bodies and landscape modeling.
[1] |
谷超豪. 数学词典[M]. 上海: 上海辞书出版社, 1992. |
[2] |
GU Chaohao. Mathematics dictionary[M]. Shanghai: Shanghai Lexicographical Publishing House, 1992. (in Chinese) |
[3] |
GARDNER M. The last recreations: hydras, eggs, and other mathematical mystifications[M]. New York: Springer-Verlag New York, Inc., 1997. |
[4] |
JÜRGEN K. Egg curves and ovals[EB/OL]. [2021-01-15]. |
[5] |
申易. 世界各国蛋形仿生建筑一览[EB/OL]. (2013-11-05)[2022-11-11]. |
[6] |
张群力, 黄俊, 程健, 等. 椭球面上的等角剖分 共形映射与建筑造型[J]. 土木建筑工程信息技术, 2013, 5(5): 63-70, 74. |
[7] |
程健, 张群力, 黄俊, 等. 数字建筑参数化建模与结构分析[J]. 土木建筑工程信息技术, 2014. 6(6): 1-7. |
[8] |
施永安. 超椭球大跨空间网壳参数化设计及优化[D]. 大连: 大连理工大学, 2019. |
[9] |
WU Zhouhu. A new two-parameter heteromorphic elliptic equation: properties and applications[J]. World Journal of Engineering and Technology, 2020, 8(4): 642-657.doi: 10.4236/wjet.2020.84045 |
[10] |
武周虎. 一种新型异形椭圆隧道横断面的性质及优化设计[J]. 重庆交通大学学报(自然科学版), 2021, 40(1): 87-95. |
[11] |
武周虎, 王瑜, 祝帅举. 一种新型异形椭圆无压隧洞断面的水力学分析[J]. 水利水电科技进展, 2020, 40(5): 1-8. |
[12] |
武周虎. 三参数异形椭球面方程 几何特征及应用前景[J]. 西安理工大学学报, 2022, 38(2): 295-300. |
[13] |
武周虎. 一种新的异形超椭圆方程 形状特征及其应用前景[J]. 国际应用数学进展, 2023, 5(1): 27-40. |
Metrics
- PDF Downloads(23)
- Abstract views(826)
- HTML views(686)