• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

2022, 14(2): 110-115. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.16

基于深度学习的变电站钢结构图纸标题栏文字检测与识别

国网上海市电力公司,上海 200120

网络出版日期: 2022-04-01

作者简介: 秦辞海(1977-),男,工程师,主要研究方向:变电站工程建设数字化研究

Text Detection and Recognition of Drawing Title Bar of Substation Steel Structure Based on Deep Learning

State Grid Shanghai Municipal Electric Power Company, Shanghai 200120, China

Available Online: 2022-04-01

引用本文: 秦辞海, 顾万里. 基于深度学习的变电站钢结构图纸标题栏文字检测与识别[J]. 土木建筑工程信息技术, 2022, 14(2): 110-115. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.16

Citation: Cihai Qin, Wanli Gu. Text Detection and Recognition of Drawing Title Bar of Substation Steel Structure Based on Deep Learning[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2022, 14(2): 110-115. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.16

摘要:为实现变电站工程建设中钢结构与电力设备的配套控制管理,需要从大量的钢结构图纸标题栏中识别相关信息,并与实物进行匹配。针对标题栏中字体模糊、表格形式多样、信息量混杂等问题,提出了基于深度学习CNN+RNN模型的文本检测和CRNN模型的文字识别方法。对现有钢结构变电站工程施工现场钢结构数据集的检测与识别显示,该方法的检测精确率达到80%以上,识别准确率达到90%以上,均优于其他文本检测与识别方法。工程应用结果表明,该方法有效解决了因文字的大小、字体、颜色与排列方式等差异引起的特征提取困难,提高了变电站钢结构图纸标题栏文字识别的准确率。

关键词: 变电站, 结构, 文本检测, 字识别, 深度学习, 图纸标题栏
[1]

Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.doi: 10.1145/3065386

[2]

周翔, 陈会, 张锴, 等. 复杂背景下的图像文本区域定位方法研究[J]. 计算机工程与应用, 2013, 49(12): 101-105.doi: 10.3778/j.issn.1002-8331.1110-0134

[3]

黄娜君, 汪慧兰, 朱强军, 等. 基于ROI和CNN的交通标志识别研究[J]. 无线电通信技术, 2018, 044(002): 160-164. 

[4]

He P, Huang W, He T, et al. Single Shot Text Detector with Regional Attention[C]. 2017 IEEE International Conference on Computer Vision(ICCV). IEEE, 2017.

[5]

Shi B, Bai X, Belongie S. Detecting oriented text in natural images by linking segments[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2550-2558.

[6]

Zhang Z, Zhang C, Shen W, et al. Multi-oriented Text Detection with Fully Convolutional Networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2016.

[7]

Wang T, Wu D J, Coates A, et al. End-to-end text recognition with convolutional neural networks[C]. Proceedings of the 21st international conference on pattern recognition(ICPR2012). IEEE, 2012: 3304-3308.

[8]

Lecun Y, Bottou L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.doi: 10.1109/5.726791

[9]

Dubey A K, Jain V. Automatic facial recognition using VGG16 based transfer learning model[J]. Journal of Information and Optimization Sciences, 2020, 1-8. 

[10]

Gers F A, Schraudolph N N, Schmidhuber J. Learning Precise Timing with LSTM Recurrent Networks[J]. Journal of Machine Learnig Research, 2003, 3(1): p. 115-143. 

[11]

Shi B, Bai X, Yao C. An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 1-1.doi: 10.1109/TPAMI.2017.2701373

[12]

Shi B, Yao C, Liao M, et al. ICDAR2017 Competition on Reading Chinese Text in the Wild(RCTW-17)[C]//2017 14th IAPR International Conference on Document Analysis and Recognition(ICDAR). IEEE, 2017.

[13]

孙凯, 姚旭峰, 黄钢. 基于机器学习的白细胞六分类研究[J]. 软件, 2020, 41(10): 98-101+134. 

[14]

Nayef N, Yin F, Bizid I, et al. ICDAR2017 Robust Reading Challenge on Multi-Lingual Scene Text Detection and Script Identification-RRC-MLT[C]//2017 14th IAPR International Conference on Document Analysis and Recognition(ICDAR). IEEE, 2017.

[15]

Wenhao He, Xu-Yao Zhang, Fei Yin, Cheng-Lin Liu. Deep Direct Regression for Multi-Oriented Scene Text Detection[J]. arXiv preprint arXiv: 1703.08289v1.

[16]

Yao C, Bai X, Liu W, et al. Detecting texts of arbitrary orientations in natural images[C]. Computer Vision & Pattern Recognition. IEEE, 2012.

[17]

Song Y, Cui Y, Hu Han, et al. Scene Text Detection via Deep Semantic Feature Fusion and Attention-based Refinement[C]. 2018 24th International Conference on Pattern Recognition(ICPR). 2018.

计量
  • PDF下载量(37)
  • 文章访问量(1863)
  • HTML全文浏览量(866)
目录

Figures And Tables

基于深度学习的变电站钢结构图纸标题栏文字检测与识别

秦辞海, 顾万里

  • 版权所有© 《土木建筑工程信息技术》编辑部
  • 京ICP备17057008号
  • 地址:北京市朝阳区兴化路2号院1号楼
  • 电话:010-64517910 邮编:100013
  • 微信号:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn
本系统由北京仁和汇智信息技术有限公司设计开 技术支持: info@rhhz.net