2023, 15(5): 1-8. doi: 10.16670/j.cnki.cn11-5823/tu.2023.05.01
混凝土3D打印的机器视觉检测研究现状与展望
1. | 华中科技大学 国家数字建造技术创新中心, 武汉 430074 |
2. | 华中科技大学 土木与水利工程学院, 武汉 430074 |
The Research Status and Prospect of Machine Vision Inspection for 3D Concrete Printing
1. | National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan 430074, China |
2. | School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文: 陈权要, 周燕, 周诚. 混凝土3D打印的机器视觉检测研究现状与展望[J]. 土木建筑工程信息技术, 2023, 15(5): 1-8. doi: 10.16670/j.cnki.cn11-5823/tu.2023.05.01
Citation: Quanyao Chen, Yan Zhou, Cheng Zhou. The Research Status and Prospect of Machine Vision Inspection for 3D Concrete Printing[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2023, 15(5): 1-8. doi: 10.16670/j.cnki.cn11-5823/tu.2023.05.01
摘要:受打印材料、打印装备、打印工艺及环境条件的影响,混凝土3D打印成形质量控制较难,且传统的人工检测手段效率低下,因此,亟需寻求新的检测途径。机器视觉技术作为一种非接触式检测方式,已逐步开始应用在混凝土3D打印缺陷检测中。为此,本文从混凝土3D打印几何形貌与精度、层间变形与稳定性及表面缺陷三个方面,综述了机器视觉技术在混凝土3D打印缺陷检测中的研究现状,以期为混凝土3D打印质量控制及发展提供借鉴。
Abstract: Due to the influence of printing materials, printing equipment, printing process and environmental conditions, it is difficult to control the quality of 3D concrete printing, and the common manual inspection is inefficient. Therefore, it is urgent to seek new inspection means. Machine vision technology, as a non-contact detection method, has gradually been applied in 3D concrete printing defect detection. To this end, this paper reviews the research status of machine vision technology in 3D concrete printing defect detection from three aspects: geometry and accuracy of 3D concrete printing, interlayer deformation and stability, and surface defects, which could provide reference for 3D concrete printing quality control and its development.
[1] |
HOU S, DUAN Z, XIAO J, et al. A review of 3D printed concrete: Performance requirements, testing measurements and mix design[J]. Construction and Building Materials, 2021, 273: 121745.doi: 10.1016/j.conbuildmat.2020.121745 |
[2] | |
[3] |
蔡培德, 黄振华, 刘良华. 混凝土3D打印技术研究进展[C//]第二十二届全国现代结构工程学术研讨会, 中国江苏徐州, 2022. |
[4] | |
[5] |
蔺喜强, 霍亮, 苏铠, 等. 混凝土3D打印两层办公室的施工关键技术[J]. 混凝土, 2022, (06): 161-70+74. |
[6] |
ORHON A V, ALTIN M. Utilization of alternative building materials for sustainable construction[M]. Environmentally-Benign Energy Solutions. Springer, 2020: 727-50. |
[7] |
BOS F P, MENNA C, PRADENA M, et al. The realities of additively manufactured concrete structures in practice[J]. Cement and Concrete Research, 2022, 156: 106746.doi: 10.1016/j.cemconres.2022.106746 |
[8] |
杨敏, 来猛刚, 窦艳宁, 等. 混凝土3D打印质量影响因素及控制方法[J]. 混凝土与水泥制品, 2021, (04): 11-6. |
[9] |
SMITH M L, SMITH L N, HANSEN M F. The quiet revolution in machine vision-a state-of-the-art survey paper, including historical review, perspectives, and future directions[J]. Computers in Industry, 2021, 130: 103472.doi: 10.1016/j.compind.2021.103472 |
[10] | |
[11] |
VANTYGHEM G, DE CORTE W, SHAKOUR E, et al. 3D printing of a post-tensioned concrete girder designed by topology optimization[J]. Automation in Construction, 2020, 112: 103084.doi: 10.1016/j.autcon.2020.103084 |
[12] |
WI K, SURESH V, WANG K, et al. Quantifying quality of 3D printed clay objects using a 3D structured light scanning system[J]. Additive Manufacturing, 2020, 32: 100987.doi: 10.1016/j.addma.2019.100987 |
[13] |
NAIR S A, SANT G, NEITHALATH N. Mathematical morphology-based point cloud analysis techniques for geometry assessment of 3D printed concrete elements[J]. Additive Manufacturing, 2022, 49: 102499.doi: 10.1016/j.addma.2021.102499 |
[14] |
YUAN P F, ZHAN Q, WU H, et al. Real-time toolpath planning and extrusion control (RTPEC) method for variable-width 3D concrete printing[J]. Journal of Building Engineering, 2022, 46: 103716.doi: 10.1016/j.jobe.2021.103716 |
[15] |
BUSWELL R, XU J, DE BECKER D, et al. Geometric quality assurance for 3D concrete printing and hybrid construction manufacturing using a standardised test part for benchmarking capability[J]. Cement and Concrete Research, 2022, 156: 106773.doi: 10.1016/j.cemconres.2022.106773 |
[16] |
XU J, BUSWELL R A, KINNELL P, et al. Inspecting manufacturing precision of 3D printed concrete parts based on geometric dimensioning and tolerancing[J]. Automation in Construction, 2020, 117: 103233.doi: 10.1016/j.autcon.2020.103233 |
[17] |
AWAD A, GAISFORD S, BASIT A W. Fused Deposition Modelling: Advances in Engineering and Medicine[M]//BASIT A W, GAISFORD S. 3D Printing of Pharmaceuticals. Cham; Springer International Publishing. 2018: 107-32. |
[18] |
AHMED G H, ASKANDAR N H, JUMAA G B. A review of largescale 3DCP: Material characteristics, mix design, printing process, and reinforcement strategies; proceedings of the Structures, F, 2022[C]. Elsevier. |
[19] |
AHN J, PARK J, JUN H. A Critical Review of the Extrusion-based 3D Construction Printing (3DCP) Technology in the Construction Industry; proceedings of the ISAIA, International Symposium on Architectural Interchanges in Asia, F, 2018[C]. ISAIA 2018. |
[20] |
KHAJAVI S H, TETIK M, MOHITE A, et al. Additive manufacturing in the construction industry: The comparative competitiveness of 3D concrete printing[J]. Applied Sciences, 2021, 11(9): 3865.doi: 10.3390/app11093865 |
[21] |
WOLFS R, BOS F, SALET T. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion[J]. Cement and Concrete Research, 2019, 119: 132-40.doi: 10.1016/j.cemconres.2019.02.017 |
[22] |
BADUGE S K, NAVARATNAM S, ABU-ZIDAN Y, et al. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods; proceedings of the Structures, F, 2021[C]. Elsevier. |
[23] |
PANDA B, NOOR MOHAMED N A, PAUL S C, et al. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete[J]. Materials, 2019, 12(13): 2149.doi: 10.3390/ma12132149 |
[24] |
BARJUEI E S, COURTEILLE E, RANGEARD D, et al. Real-time vision-based control of industrial manipulators for layer-width setting in concrete 3D printing applications[J]. Advances in Industrial and Manufacturing Engineering, 2022: 100094. |
[25] |
LINDEMANN H, GERBERS R, IBRAHIM S, et al. Development of a shotcrete 3D-printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures; proceedings of the RILEM International Conference on Concrete and Digital Fabrication, F, 2018[C]. Springer. |
[26] |
DAVTALAB O, KAZEMIAN A, YUAN X, et al. Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection[J]. Journal of Intelligent Manufacturing, 2020: 1-14. |
[27] |
YANG X, LAKHAL O, BELAROUCI A, et al. Adaptive Deposit Compensation of Construction Materials in a 3D Printing Process; proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), F, 2022[C]. IEEE. |
[28] |
WOLFS R J M, BOS F P, VAN STRIEN E C F, et al. A real-time height measurement and feedback system for 3D concrete printing[M]. High Tech Concrete: Where Technology and Engineering Meet. Springer. 2018: 2474-83. |
[29] |
马宗方, 杨兴伟, 宋琳, 等. 基于层间信息熵的混凝土3D打印构件精细分割[J]. 激光与光电子学进展, 2022, 59(04): 101-8. |
[30] |
RUBIO M, SONEBI M, AMZIANE S. 3D printing of fibre cement-based materials: fresh and rheological performances[J]. Academic Journal of Civil Engineering, 2017, 35(2): 480-8. |
[31] |
RILL-GARCíA R, DOKLADALOVA E, DOKLáDAL P, et al. Inline monitoring of 3D concrete printing using computer vision[J]. Additive Manufacturing, 2022, 60: 103175.doi: 10.1016/j.addma.2022.103175 |
[32] |
SHEN H, DU W, SUN W, et al. Visual detection of surface defects based on self-feature comparison in robot 3-D printing[J]. Applied Sciences, 2019, 10(1): 235.doi: 10.3390/app10010235 |
[33] |
DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete—Technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112: 25-36.doi: 10.1016/j.cemconres.2018.06.001 |
[34] |
LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-66.doi: 10.1016/j.cemconres.2011.12.003 |
[35] |
徐卓越, 李辉, 张大旺, 等. 建筑3D打印用胶凝材料及其相关性能研究进展[J]. 材料导报, 2023, (12): 1-29. |
[36] |
SANJAYAN J G, NEMATOLLAHI B, XIA M, et al. Effect of surface moisture on inter-layer strength of 3D printed concrete[J]. Construction and Building Materials, 2018, 172: 468-75.doi: 10.1016/j.conbuildmat.2018.03.232 |
[37] |
MARCHON D, KAWASHIMA S, BESSAIES-BEY H, et al. Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry[J]. Cement and Concrete Research, 2018, 112: 96-110.doi: 10.1016/j.cemconres.2018.05.014 |
[38] |
MOELICH G M, KRUGER J, COMBRINCK R. Plastic shrinkage cracking in 3D printed concrete[J]. Composites Part B: Engineering, 2020, 200: 108313.doi: 10.1016/j.compositesb.2020.108313 |
[39] |
MOELICH G, KRUGER P, COMBRINCK R. A plastic shrinkage cracking risk model for 3D printed concrete exposed to different environments[J]. Cement and Concrete Composites, 2022, 130: 104516. |
[40] |
VAN DER PUTTEN J, DEPREZ M, CNUDDE V, et al. Microstructural characterization of 3D printed cementitious materials[J]. Materials, 2019, 12(18): 2993. |
[41] |
LAO W, LI M, WONG T N, et al. Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control[J]. Virtual and Physical Prototyping, 2020, 15(2): 178-93. |
[42] |
LAO W, LI M, TJAHJOWIDODO T. Variable-geometry nozzle for surface quality enhancement in 3D concrete printing[J]. Additive Manufacturing, 2021, 37: 101638. |
[43] |
周鹏, 徐科, 杨朝霖. 基于SIFT的中厚板表面缺陷识别方法[J]. 清华大学学报(自然科学版), 2018, 58(10): 881-7. |
[44] |
SENTHILNATHAN S, RAPHAEL B. Using Computer Vision for Monitoring the Quality of 3D-Printed Concrete Structures[J]. Sustainability, 2022, 14(23): 15682. |
[45] |
HACK N, JANTZEN C, BROHMANN L, et al. A Closed-Loop Workflow for Quality Inspection and Integrated Post-processing of 3D-Printed Concrete Elements; proceedings of the RILEM International Conference on Concrete and Digital Fabrication, F, 2022[C]. Springer. |
[46] |
GARFO S, MUKTADIR M A, YI S. Defect detection on 3d print products and in concrete structures using image processing and convolution neural network[J]. Journal of Mechatronics and Robotics, 2020, 4(1): 74-84. |
[47] |
KRUGER J, DU PLESSIS A, VAN ZIJL G. An investigation into the porosity of extrusion-based 3D printed concrete[J]. Additive Manufacturing, 2021, 37: 101740. |
[48] | |
[49] |
吴凯, 赖建中, 杜龙雨, 等. 3D打印超高性能混凝土的抗渗及抗冻性能研究[J]. 混凝土与水泥制品, 2022, (10): 1-6. |
[50] |
ZHANG C, JIA Z, LUO Z, et al. Printability and pore structure of 3D printing low carbon concrete using recycled clay brick powder with various particle features[J]. Journal of Sustainable Cement-Based Materials, 2022: 1-10. |
[51] |
KAN D, LIU G, CAO S C, et al. Mechanical Properties and Pore Structure of Multiwalled Carbon Nanotube-Reinforced Reactive Powder Concrete for Three-Dimensional Printing Manufactured by Material Extrusion[J]. 3D Printing and Additive Manufacturing, 2022. |
[52] |
CHANG Z, WAN Z, XU Y, et al. Convolutional neural network for predicting crack pattern and stress-crack width curve of air-void structure in 3D printed concrete[J]. Engineering Fracture Mechanics, 2022, 271: 108624. |
计量
- PDF下载量(56)
- 文章访问量(2411)
- HTML全文浏览量(887)