2020, 12(2): 133-139. doi: 10.16670/j.cnki.cn11-5823/tu.2020.02.21
基于SIFT-SRBICP算法特征点云提取与配准研究
上海工程技术大学航空运输学院,上海 201620 |
Research on Feature Point Cloud Extraction and Registration Based on SIFT-SRBICP Algorithm
School of Air Transport, Shanghai University of Engineering Science, Shanghai 201620, China |
引用本文: 李陆君, 党淑雯, 王庆渠. 基于SIFT-SRBICP算法特征点云提取与配准研究[J]. 土木建筑工程信息技术, 2020, 12(2): 133-139. doi: 10.16670/j.cnki.cn11-5823/tu.2020.02.21
Citation: Li Lujun, Dang Shuwen, Wang Qingqu. Research on Feature Point Cloud Extraction and Registration Based on SIFT-SRBICP Algorithm[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2020, 12(2): 133-139. doi: 10.16670/j.cnki.cn11-5823/tu.2020.02.21
摘要:针对图像特征点提取效率低和稳定性差,点云集在实际情况下由于尺度变换引起的匹配不准确和旋转角变化过大引起的配准效果不佳的问题。本文对SIFT、SURF及ORB三种算法进行对比分析,验证了SIFT算法在解决图像特征点提取问题上优于其它两种算法。本文采用SIFT算法进行特征点提取,并提出基于改进型的SRBICP算法对点云进行配准,该方法不仅增加了初始信息素的随机性和考虑了尺度矩阵的边界,并加入了旋转角约束矩阵、动态迭代系数以及退火系数等因素对点云配准模型进行构建。最后采用基于开源GNU/Linux系统所搭载的的Ubuntu操作系统,在Ubuntu系统平台上进行仿真实验,实验结果表明,改进后的算法比传统ICP算法配准精度提高了约50%,同时配准速度提高了约40%。
Abstract: In view of the low efficiency and poor stability of image feature point extraction, as well as the inaccurate matching problem caused by scale transformation and the poor registration effect caused by too large rotation angle change in the actual situation of point cloud, this paper compares and analyzes three algorithms of SIFT, SURF and ORB, respectively, and verifies that the SIFT algorithm is better than the other two algorithms in solving the problem of image feature point extraction. In this paper, the SIFT algorithm is used to extract feature points, and an improved SRBICP algorithm is proposed to register the point cloud. This method not only increases the randomness of initial pheromone and considers the boundary of scale matrix, but also adds some factors such as rotation angle constraint matrix, dynamic iteration coefficient and annealing coefficient to construct point cloud registration model. Finally, the Ubuntu operating system based on the open source GNU/Linux system is used to perform simulation experiments on the Ubuntu system platform. The experimental results show that the improved algorithm improves the registration accuracy by about 50%, and the registration speed by about 40% compared with the traditional ICP algorithm..
[1] |
卢灵青, 曾玉珠, 李俊.基于Kinect v2三维重建的研究与实现[J].电脑编程技巧与维护, 2018(5): 127-130.doi: 10.3969/j.issn.1006-4052.2018.05.047 |
[2] |
毛一鸣, 王建明, 晏涛, 等.基于空间平面分割和投影变换的光场图像拼接算法[J].激光与光电子学进展, 2019(3): 1-14. |
[3] |
孙苗苗, 姜媛媛, 李振璧, 等.基于图像拼接和帧间差分输电线路图像分割方法[J].红外技术, 2017, 39(2): 168-172. |
[4] |
孔栋, 王晓原, 刘亚奇, 等.基于车载32线激光雷达点云的车辆目标识别算法[J].科学技术与工程, 2018, 18(5): 81-85.doi: 10.3969/j.issn.1671-1815.2018.05.014 |
[5] |
杨小青, 杨秋翔, 杨剑.基于法向量改进的ICP算法[J].计算机工程与设, 2016, 37(1): 169-173. |
[6] |
Zhang C, Du S, Liu J, et al.Robust iterative closest point algo-rithm with bounded rotation angle for 2 D registration[J].Neuro-computing, 2016, 195(C): 172-180. |
[7] |
范新南, 顾亚飞, 倪建军.改进ORB算法在图像匹配中的应用[J].计算机与现代化, 2019(2): 1-6.doi: 10.3969/j.issn.1006-2475.2019.02.001 |
[8] |
Zhang C, Du S, Liu J, et al.Robust iterative closest point algo-rithm with bounded rotation angle for 2 D registration[J].Neuro-computing, 2016, 195(C): 172-180. |
[9] |
王庆璨.三维点云数据配准算法研究[D].陕西: 西安电子科技大学, 2015. |
[10] |
Du S, Liu J, Zhang C. Probability iterative closest point algorithm for m-D point set registration with noise[J].Neurocomputing, 2015, 157:187-198.doi: 10.1016/j.neucom.2015.01.019 |
[11] |
Zhao L, Shen X, Long X. Robust wrinkle-aware non-rigid regis-tration for triangle meshes of hand with rich and dynamic details[J].Computers & Graphics, 2012, 36(5): 577-583. |
[12] |
李清平.多源运动图像的跨尺度配准与融合研究[D].北京: 北京邮电大学, 2015. |
[13] |
胡为, 刘兴雨.基于改进SIFT算法的单目SLAM图像匹配方法[J].电光与控制, 2019, 26(5): 7-13.doi: 10.3969/j.issn.1671-637X.2019.05.002 |
[14] | |
[15] |
刘淑英, 赵夫群.基于旋转角约束的尺度迭代最近点算法[J].信息技术, 2018, 42(7): 56-59, 64.doi: 10.3969/j.issn.1671-7384.2018.07.019 |
计量
- PDF下载量(21)
- 文章访问量(2242)
- HTML全文浏览量(818)