Citation: Li Lujun, Dang Shuwen, Wang Qingqu. Research on Feature Point Cloud Extraction and Registration Based on SIFT-SRBICP Algorithm. Journal of Information Technologyin Civil Engineering and Architecture, 2020, 12(2): 133-139. doi: 10.16670/j.cnki.cn11-5823/tu.2020.02.21
2020, 12(2): 133-139. doi: 10.16670/j.cnki.cn11-5823/tu.2020.02.21
Research on Feature Point Cloud Extraction and Registration Based on SIFT-SRBICP Algorithm
School of Air Transport, Shanghai University of Engineering Science, Shanghai 201620, China |
In view of the low efficiency and poor stability of image feature point extraction, as well as the inaccurate matching problem caused by scale transformation and the poor registration effect caused by too large rotation angle change in the actual situation of point cloud, this paper compares and analyzes three algorithms of SIFT, SURF and ORB, respectively, and verifies that the SIFT algorithm is better than the other two algorithms in solving the problem of image feature point extraction. In this paper, the SIFT algorithm is used to extract feature points, and an improved SRBICP algorithm is proposed to register the point cloud. This method not only increases the randomness of initial pheromone and considers the boundary of scale matrix, but also adds some factors such as rotation angle constraint matrix, dynamic iteration coefficient and annealing coefficient to construct point cloud registration model. Finally, the Ubuntu operating system based on the open source GNU/Linux system is used to perform simulation experiments on the Ubuntu system platform. The experimental results show that the improved algorithm improves the registration accuracy by about 50%, and the registration speed by about 40% compared with the traditional ICP algorithm..
[1] |
卢灵青, 曾玉珠, 李俊.基于Kinect v2三维重建的研究与实现[J].电脑编程技巧与维护, 2018(5): 127-130.doi: 10.3969/j.issn.1006-4052.2018.05.047 |
[2] |
毛一鸣, 王建明, 晏涛, 等.基于空间平面分割和投影变换的光场图像拼接算法[J].激光与光电子学进展, 2019(3): 1-14. |
[3] |
孙苗苗, 姜媛媛, 李振璧, 等.基于图像拼接和帧间差分输电线路图像分割方法[J].红外技术, 2017, 39(2): 168-172. |
[4] |
孔栋, 王晓原, 刘亚奇, 等.基于车载32线激光雷达点云的车辆目标识别算法[J].科学技术与工程, 2018, 18(5): 81-85.doi: 10.3969/j.issn.1671-1815.2018.05.014 |
[5] |
杨小青, 杨秋翔, 杨剑.基于法向量改进的ICP算法[J].计算机工程与设, 2016, 37(1): 169-173. |
[6] |
Zhang C, Du S, Liu J, et al.Robust iterative closest point algo-rithm with bounded rotation angle for 2 D registration[J].Neuro-computing, 2016, 195(C): 172-180. |
[7] |
范新南, 顾亚飞, 倪建军.改进ORB算法在图像匹配中的应用[J].计算机与现代化, 2019(2): 1-6.doi: 10.3969/j.issn.1006-2475.2019.02.001 |
[8] |
Zhang C, Du S, Liu J, et al.Robust iterative closest point algo-rithm with bounded rotation angle for 2 D registration[J].Neuro-computing, 2016, 195(C): 172-180. |
[9] |
王庆璨.三维点云数据配准算法研究[D].陕西: 西安电子科技大学, 2015. |
[10] |
Du S, Liu J, Zhang C. Probability iterative closest point algorithm for m-D point set registration with noise[J].Neurocomputing, 2015, 157:187-198.doi: 10.1016/j.neucom.2015.01.019 |
[11] |
Zhao L, Shen X, Long X. Robust wrinkle-aware non-rigid regis-tration for triangle meshes of hand with rich and dynamic details[J].Computers & Graphics, 2012, 36(5): 577-583. |
[12] |
李清平.多源运动图像的跨尺度配准与融合研究[D].北京: 北京邮电大学, 2015. |
[13] |
胡为, 刘兴雨.基于改进SIFT算法的单目SLAM图像匹配方法[J].电光与控制, 2019, 26(5): 7-13.doi: 10.3969/j.issn.1671-637X.2019.05.002 |
[14] | |
[15] |
刘淑英, 赵夫群.基于旋转角约束的尺度迭代最近点算法[J].信息技术, 2018, 42(7): 56-59, 64.doi: 10.3969/j.issn.1671-7384.2018.07.019 |
Metrics
- PDF Downloads(21)
- Abstract views(2241)
- HTML views(818)