2021, 13(3): 154-159. doi: 10.16670/j.cnki.cn11-5823/tu.2021.03.23
不同网格类型对建筑风环境仿真结果的影响
北京构力科技有限公司,上海 200023 |
The Impact of Different Mesh Types on the Outdoor Wind Environment of Buildings
Beijing Glory PKPM Technology Co., Ltd., Shanghai 200023, China |
引用本文: 陈佳, 王梦林. 不同网格类型对建筑风环境仿真结果的影响[J]. 土木建筑工程信息技术, 2021, 13(3): 154-159. doi: 10.16670/j.cnki.cn11-5823/tu.2021.03.23
Citation: Jia Chen, Menglin Wang. The Impact of Different Mesh Types on the Outdoor Wind Environment of Buildings[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2021, 13(3): 154-159. doi: 10.16670/j.cnki.cn11-5823/tu.2021.03.23
摘要:本文使用开源CFD软件工具OpenFOAM,通过设置不同的建筑表面网格尺寸和不同的网格类型,计算建筑风环境的人行区风速分布情况,并按照绿建相关标准进行结果统计。通过对比分析,发现在不同的建筑表面尺寸下,贴体网格的算例中,高风速和低风速的面积占比相对较多,非贴体网格的算例中,面积占比大部分集中在中等风速。由此可以看出,贴体网格的计算结果能更好的预测高低风速的区域,因此建议使用贴体网格进行建筑室外风环境的仿真计算。
Abstract: In this paper, by using the CFD open-source tool OpenFOAM, the wind speed distribution in the pedestrian zone is studied for the building wind environment with different building surface mesh sizes and different mesh types according to the relevant green building standards. It is found that under different building surface sizes, the area ratio of high and low wind speed is higher than middle wind speed between snap and no snap mesh. The area ratio of medium wind speed is higher than the others between snap and no snap mesh. Therefore, it is recommended to use a snap mesh type to simulate the outdoor wind environment of the building.
[1] |
陶文铨. 数值传热学[M]. 第2版. 西安: 西安交通大学出版社, 2001. |
[2] |
许杰峰, 鲍玲玲, 马恩成, 等. 基于BIM的预制装配建筑体系应用技术[J]. 土木建筑工程信息技术, 2016, 8(4): 17-16. |
[3] |
GB/T 50378-2019绿色建筑评价标准[S]. |
[4] |
JGJ/T 449-2018民用建筑绿色性能计算标准[S]. |
[5] |
赵志安, 邱相武, 姜立, 等. BIM技术在绿色建筑设计系列软件中的应用探讨[J]. 土木建筑工程信息技术, 2012, 4(4): 115-118.doi: 10.3969/j.issn.1674-7461.2012.04.022 |
[6] | |
[7] |
庄智, 余元波, 叶海, 等. 建筑室外风环境CFD模拟技术研究现状[J]. 建筑科学, 2014, 30(02): 108-114.doi: 10.3969/j.issn.1002-8528.2014.02.021 |
[8] |
马剑, 程国标, 毛亚郎. 基于CFD技术的群体建筑风环境研究[J]. 浙江工业大学学报, 2007(03): 351-354.doi: 10.3969/j.issn.1006-4303.2007.03.025 |
[9] |
Tominaga, Yoshihide & Mochida, Akashi & Yoshie, Ryuichiro & Kataoka, Hiroto & Nozu, T. & Yoshikawa, Masaru & Shirasawa, Taichi. (2008) AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics. 96.1749-1761.10.1016/j. jweia. 2008.02.058. |
[10] |
Bert Blocken, Ted Stathopoulos, Jan Carmeliet, Jan Hensen. Application of CFD in building performance simulation for the outdoor environment: an overview. Journal of Building Performance Simulation, Vol. 4, No. 2, June 2011, 157-184. |
[11] |
康忠良, 方媛媛. 计算风工程中的网格技术对比研究[J]. 土木建筑工程信息技术, 2015, 7(2): 80-83.doi: 10.3969/j.issn.1674-7461.2015.02.013 |
[12] |
阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(05): 562-589. |
[13] |
Hagbo, Trond-Ola; Giljarhus, Knut Erik Teigen; Qu, Sen; Hjertager, Bjørn H(2019) The performance of structured and unstructured grids on wind simulations around a high-rise building. IOP Conference Series: Materials Science and Engineering. ISSN 1757-8981. Volume 700. Booklet 1. |
[14] |
王硕, 凡凤仙, 张盟盟等. 基于OpenFOAM的正弦形沙丘表面流场特性研究[J]. 上海理工大学学报, 2017(4). |
[15] |
Kastner, Patrick & Dogan, Timur. (2018) Streamlining meshing methodologies for annual urban CFD simulations. |
[16] |
Li, Jing & Delmas, Aymeric & Donn, Michael & Willis, Riley. (2018) Validation and Comparison of Different CFD Simulation Software Predictions of Urban Wind Environment Based on AIJ Wind Tunnel Benchmarks. 27.10.22360/simaud. 2018. simaud. 027. |
[17] |
Mohan, Rakshantha & Sundararaj, Senthilkumar & B T, Kannan. (2019) Numerical simulation of flow over buildings using OpenFOAM®. AIP Conference Proceedings. 2112.020149.10.1063/1.5112334. |
计量
- PDF下载量(30)
- 文章访问量(1978)
- HTML全文浏览量(1337)