2022, 14(2): 10-17. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.02
基于YOLOv3算法的危险区域工人识别
1. | 武汉科技大学 资源与环境工程学院,武汉 430081 |
2. | 冶金矿产资源高效利用与造块湖北省重点实验室,武汉 430081 |
3. | 上海工程技术大学 化学化工学院,上海 201620 |
Worker Identification in Hazardous Areas Based on YOLOv3 Algorithm
1. | School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China |
2. | Key Laboratory of Hubei Province for Efficient Utilization of Metallurgical Mineral Resources and Block Building, Wuhan, Hubei 430081, China |
3. | School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China |
引用本文: 任磊, 苗作华, 李自强, 刘礼坤, 汤阳, 王梦婷, 谢媛. 基于YOLOv3算法的危险区域工人识别[J]. 土木建筑工程信息技术, 2022, 14(2): 10-17. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.02
Citation: Lei Ren, Zuohua Miao, Ziqiang Li, Likun Liu, Yang Tang, Mengting Wang, Yuan Xie. Worker Identification in Hazardous Areas Based on YOLOv3 Algorithm[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2022, 14(2): 10-17. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.02
摘要:土木工程施工现场是一个复杂多变且事故发生率较高的作业环境,同一个工程场地存在着多个危险区域。对该区域传统的管理方式是派专职人员进行看守和管理,这种人工管理的方式易出错且不能够及时发现人员的进入情况。对于动态危险区域,操作人员在操作机械的同时还要兼顾周围环境情况,这不仅会降低工作效率且不利于发现该区域存在的工人。为了解决这个问题和提高监管的效率,计算机视觉的融入将会是很好的选择,该方法首先需要根据相关规章制度去确定危险区域,然后在合适的位置布置摄像头,最后运用YOLOv3(You Only Look Once,是一种快速和准确的实时对象检测算法,发展到YOLOv3实现了算法上的突破,在精度和速度上也实现了质的飞越)目标识别算法实现智能监管。本文介绍了该算法的基本原理和具体的目标识别实现途径,并针对危险区域的范围不同设计了两种训练集的制作方式,最后用实验去验证该方法的可行性与准确性,结果表明,该方法对于工人的识别具有较高的正确率,故把该方法用于危险区域的工人识别将会大大降低事故发生概率,弥补了单纯人工监管的缺陷,丰富了安全管理的手段。
Abstract: The construction site is a complex and changeable working environment with a high accident rate. There are multiple hazardous areas on the same engineering site. The traditional management method for this area is to send full-time personnel to guard and manage. This manual management method is prone to errors and cannot timely detect the entry of personnel in time.For dynamic hazardous areas, operators must take consideration of the surrounding environment while operating the machinery, which will not only reduce work efficiency but also be unfavorable for finding workers in the area. In order to solve this problem and to improve the efficiency of supervision, the integration of computer vision will be a good choice. This method first needs to determine the hazardous area according to relevant rules and regulations, then arrange the camera at the appropriate position, and finally use the YOLOv3(You Only Look Once, is a fast and accurate real-time object detection algorithm, developed to YOLOv3 to achieve a breakthrough in the algorithm, and also achieved a qualitative leap in accuracy and speed)target recognition algorithm to achieve Intelligent supervision. This article introduces the basic principle of the algorithm and the specific realization method of target recognition, and according to the different scope of the hazardous area, two methods of making training sets are being designed.Finally, experiments are used to verify the feasibility and accuracy of the method. The results show that the method has a higher accuracy rate for worker identification. Therefore, applying this method to worker identification in hazardous areas will greatly reduce the probability of accidents and make up for the shortcomings of purely manual supervision enrich the means of safety management.
[1] |
刘文平. 基于BIM与定位技术的施工事故预警机制研究[D]. 清华大学, 2015. |
[2] |
郭红领, 于言滔, 刘文平, 等. BIM和RFID在施工安全管理中的集成应用研究[J]. 工程管理学报, 2014, 28(4): 87-92. |
[3] |
赵一秾, 李若熙, 曹语含, 等. 双流卷积网络工人异常行为识别算法研究[J]. 辽宁科技大学学报, 2019, 42(4): 301-308. |
[4] |
强茂山, 张东成, 江汉臣. 基于加速度传感器的建筑工人施工行为识别方法[J]. 清华大学学报(自然科学版), 2017, 57(12): 1338-1344. |
[5] |
张明媛, 曹志颖, 赵雪峰, 等. 基于深度学习的建筑工人安全帽佩戴识别研究[J]. 安全与环境学报, 2019, 19(2): 535-541. |
[6] |
高寒, 骆汉宾, 方伟立. 基于机器视觉的施工危险区域侵入行为识别方法[J]. 土木工程与管理学报, 2019, 36(1): 123-128.doi: 10.3969/j.issn.2095-0985.2019.01.019 |
[7] |
Han S U, Pena-Mora F. Vision-based detection of a unsafe actions of a construction worker: Case study ladder climbing[J]. Journal of Computing in Civil EngIneering, 2013, 27(6): 635-644.doi: 10.1061/(ASCE)CP.1943-5487.0000279 |
[8] |
Kolar Z, Chen H, Luo X. Transfer learning and deep convolutional neural networks for safety guardrail detection in 2D images[J]. Automation in Construction, 2018, 89: 58-70.doi: 10.1016/j.autcon.2018.01.003 |
[9] |
Fang Q, Li H, Luo X, et al. Detecting non-hardhatuse by a deep learning method from farfield surveillance videos[J]. Automation in Construction, 2018, 85: 1-9.doi: 10.1016/j.autcon.2017.09.018 |
[10] |
赵挺生, 徐凯, 周炜. 施工现场危险区域分级管理[J]. 工业安全与环保, 2018, 44(11): 43-46.doi: 10.3969/j.issn.1001-425X.2018.11.012 |
[11] |
王伟, 吕山可, 张雨果, 等. 基于BIM与机器视觉技术结合的建筑施工危险区域入侵预警研究[J]. 安全与环境工程, 2020, 27(2): 196-203. |
[12] |
王毅恒, 许德章. 基于YOLOv3算法的农场环境下奶牛目标识别[J]. 广东石油化工学院学报, 2019, 29(4): 31-35.doi: 10.3969/j.issn.2095-2562.2019.04.007 |
[13] |
Redmon J, Diwala S, Girshick R et al. You only look once: Unified, real-time object detectiono[C]//Proceedings of CVPR, 2015, 779-788. |
[14] |
李慕锴, 张涛, 崔文楠. 基于YOLOv3的红外行人小目标检测技术研究[J]. 红外技术, 2020, 42(2): 176-181. |
[15] |
钟映春, 孙思语, 吕帅, 等. 铁塔航拍图像中鸟巢的YOLOv3识别研究[J]. 广东工业大学学报, 2020, 37(3): 42-48.doi: 10.12052/gdutxb.190128 |
计量
- PDF下载量(52)
- 文章访问量(1912)
- HTML全文浏览量(1131)