• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

基于深度学习的变电站钢结构图纸标题栏文字检测与识别
秦辞海, 顾万里
2022,14(2):110-115. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.16
为实现变电站工程建设中钢结构与电力设备的配套控制管理,需要从大量的钢结构图纸标题栏中识别相关信息,并与实物进行匹配。针对标题栏中字体模糊、表格形式多样、信息量混杂等问题,提出了基于深度学习CNN+RNN模型的文本检测和CRNN模型的文字识别方法。对现有钢结构变电站工程施工现场钢结构数据集的检测与识别显示,该方法的检测精确率达到80%以上,识别准确率达到90%以上,均优于其他文本检测与识别方法。工程应用结果表明,该方法有效解决了因文字的大小、字体、颜色与排列方式等差异引起的特征提取困难,提高了变电站钢结构图纸标题栏文字识别的准确率。
关键词: 变电站, 结构, 文本检测, 字识别, 深度学习, 图纸标题栏
基于计算机视觉的混凝土缺陷检测研究综述
姜韶华, 蒋希晗
2023,15(4):14-21. doi: 10.16670/j.cnki.cn11-5823/tu.2023.04.03
混凝土缺陷对混凝土结构的安全性和稳定性造成的威胁不容小觑,因此,定期的缺陷检测对混凝土结构的维护至关重要。相较于主观低效的人工视觉检测,计算机视觉因在混凝土缺陷检测的自动化方面具有显著优势而成为近年来的研究热点,但目前缺乏该领域的全面综述。因此,本文旨在综合分析计算机视觉技术在混凝土缺陷检测领域的研究进展,对混凝土缺陷检测涉及的计算机视觉算法进行分类,总结现存的技术难点并分析未来研究方向,为该领域的后续研究提供一定的参考。
关键词: 缺陷检测, 混凝土结构, 计算机视觉, 深度学习, 机器学习
混凝土3D打印的机器视觉检测研究现状与展望
陈权要, 周燕, 周诚
2023,15(5):1-8. doi: 10.16670/j.cnki.cn11-5823/tu.2023.05.01
受打印材料、打印装备、打印工艺及环境条件的影响,混凝土3D打印成形质量控制较难,且传统的人工检测手段效率低下,因此,亟需寻求新的检测途径。机器视觉技术作为一种非接触式检测方式,已逐步开始应用在混凝土3D打印缺陷检测中。为此,本文从混凝土3D打印几何形貌与精度、层间变形与稳定性及表面缺陷三个方面,综述了机器视觉技术在混凝土3D打印缺陷检测中的研究现状,以期为混凝土3D打印质量控制及发展提供借鉴。
关键词: 混凝土3D打印, 机器视觉, 缺陷检测, 质量控制, 深度学习
基于机器视觉的混凝土3D打印几何特征自动提取方法研究
胡帅, 孙金桥, 王宇向, 霍亮, 陈权要, 周诚
2024,16(3):1-7. doi: 10.16670/j.cnki.cn11-5823/tu.2024.03.01
近年来,随着混凝土3D打印技术的不断发展,打印成品的质量受到越来越多的关注。打印成品的几何特征已成为评估打印质量的重要指标。针对当前3D打印混凝土几何特征提取中存在的诸如流程复杂、精度有限及缺乏评价指标等问题,本文设计了基于机器视觉的混凝土3D打印几何特征自动提取方法。首先,采用摄像头阵列部署方法获取打印成品的原始图像,并对原图像正畸以提高图像质量;其次,通过语义分割模型U-Net提取打印成品的几何特征,并对得到的结果进行优化;最后,通过量化的指标值,对其进行了可视化并评价打印结果。实验证明,本文提出的几何特征自动提取方法具有速度快、精度高等显著优势;此外,系统化的打印评价指标可为混凝土3D打印质量评估提供借鉴参考。
关键词: 混凝土3D打印, 视觉检测, 摄像头阵列, 深度学习, 几何特征提取

出版年份

相关作者

相关热词

  • 版权所有© 《土木建筑工程信息技术》编辑部
  • 京ICP备17057008号
  • 地址:北京市朝阳区兴化路2号院1号楼
  • 电话:010-64517910 邮编:100013
  • 微信号:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn
本系统由北京仁和汇智信息技术有限公司设计开 技术支持: info@rhhz.net