2024, 16(1): 15-21. doi: 10.16670/j.cnki.cn11-5823/tu.2024.01.03
面向公路工程规范的多粒度知识提取与知识应用方法
1. | 广东省路桥建设发展有限公司,广州 510623 |
2. | 清华大学 土木工程系,北京 100084 |
3. | 清华大学 深圳国际研究生院,深圳 518055 |
Multi-Level Knowledge Extraction and Application Methods for Highway engineering Specifications
1. | Guangdong Road & Bridge Construction Development Co., Ltd., Guangzhou 510623, China |
2. | Civil Engineering Department, Tsinghua University, Beijing 100084, China |
3. | Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China |
引用本文: 孙克强, 张嘉鸿, 伍震, 胡振中. 面向公路工程规范的多粒度知识提取与知识应用方法[J]. 土木建筑工程信息技术, 2024, 16(1): 15-21. doi: 10.16670/j.cnki.cn11-5823/tu.2024.01.03
Citation: Keqiang Sun, Jiahong Zhang, Zhen Wu, Zhenzhong Hu. Multi-Level Knowledge Extraction and Application Methods for Highway engineering Specifications[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2024, 16(1): 15-21. doi: 10.16670/j.cnki.cn11-5823/tu.2024.01.03
摘要:针对公路工程领域知识繁多而应用效率低的问题,提出面向公路规范类文本的多粒度知识提取与知识应用方法。在词语粒度上构建了公路工程领域词库;在语段粒度上提出TEARS定义,将复杂语段转换为结构化的三元组结构;在子句粒度上总结了四种主要句法,并各自设计了语义信息的抽取方法。以967本公路规范类文本为数据源,从中提取知识并构建了公路工程领域知识图谱,通过与深度学习方法比较验证了正确性,开发公路工程安全信息检索与应用系统。结果表明:该方法实现了非结构化公路规范类文本的知识提取,构建的领域知识图谱质量较高,满足工程应用需求。
Abstract: Aiming at the problem of low efficiency in searching huge domain knowledge in the field of highway engineering, a multi-level knowledge extraction method for highway engineering specifications is proposed in the present paper. In the word level, a domain lexical database of highway engineering is constructed. In the paragraph level, a TEARS definition for highway engineering specifications is proposed, therefore unstructured paragraphs can be converted into structured triples. In the sentence level, four main sentence structures and their extraction methods for semantic information are designed respectively. The research constructs a domain knowledge graph of highway engineering by using above established methods and taking 967 highway engineering specifications as data source, and further develops a highway engineering safety information searching and application system. The result shows that the proposed methods can successfully extract knowledge from highway engineering specifications, and the constructed domain knowledge graph can fully meet the needs of engineering applications.
[1] |
郭晓剑, 胡欢. 基于CiteSpace的我国建筑信息化知识图谱构建和分析[J]. 土木工程与管理学报, 2020, 37(06): 44-51. |
[2] |
赵京胜, 宋梦雪, 高祥. 自然语言处理发展及应用综述[J]. 信息技术与信息化, 2019(07): 142-145. |
[3] |
COWIE J, LEHNERT W. Information extraction[J]. Communications of the ACM, 1996, 39(1): 80-91.doi: 10.1145/234173.234209 |
[4] |
HOGAN A, BLOMQVIST E, COCHEZ M, et al. Knowledge graphs[J]. ACM Computing Surveys (CSUR), 2021, 54(4): 1-37. |
[5] |
胡振中, 刘毅, 林超. 基于BIM的工程管理信息技术研究展望[J]. 工业建筑, 2022, 52(10): 195-203. |
[6] |
张荷花, 顾明. BIM模型智能检查工具研究与应用[J]. 土木建筑工程信息技术, 2018, 10(02): 1-6. |
[7] |
HUFFMAN S B. Learning information extraction patterns from examples[M]//HUFFMAN S B. Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing. Springer. 2005: 246-260. |
[8] |
YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation, 2019, 31(7): 1235-1270. |
[9] |
BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-901. |
[10] |
DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv: 181004805, 2018. |
[11] |
WU L T, LIN J R, LENG S, et al. Rule-based information extraction for mechanical-electrical-plumbing-specific semantic web[J]. Automation in Construction, 2022, 135: 104108. |
[12] |
HU Z Z, LENG S, LIN J R, et al. Knowledge extraction and discovery based on BIM: a critical review and future directions[J]. Archives of Computational Methods in Engineering, 2021: 1-22. |
[13] |
HJELSETH E, NISBET N. Capturing normative constraints by use of the semantic mark-up RASE methodology; proceedings of the Proceedings of CIB W78-W102 Conference, F, 2011[C]. |
[14] |
姜韶华, 周涵. 支持建设行业合规性检查的语义方法[J]. 土木工程与管理学报, 2017, 34(05): 60-65+89. |
[15] |
周育丞, 郑哲, 林佳瑞, 等. 面向智能审图的规范条文命名实体识别[C]//. 第七届全国BIM学术会议, 中国重庆: 中国建筑工业出版社数字出版中心, 2021, 478-482. |
[16] |
ZHENG Z, ZHOU Y C, LU X Z, et al. Knowledge-informed semantic alignment and rule interpretation for automated compliance checking[J]. Automation in Construction, 2022, 142: 104524. |
[17] |
ZHANG J, EL-GOHARY N M. Semantic NLP-based information extraction from construction regulatory documents for automated compliance checking[J]. Journal of Computing in Civil Engineering, 2016, 30(2): 04015014. |
[18] |
陈远, 张雨, 康虹. 基于知识管理的BIM模型建筑设计合规性自动检查系统研究[J]. 图学学报, 2020, 41(03): 490-499. |
[19] |
孙澄宇, 柯勋. 建筑设计中BIM模型的自动规范检查方法研究[J]. 建筑科学, 2016, 32(04): 140-145. |
[20] |
EASTMAN C, LEE J M, JEONG Y S, et al. Automatic rule-based checking of building designs[J]. Automation in construction, 2009, 18(8): 1011-1033. |
[21] |
马羚, 张昊, 郭红领, 等. 智能施工平台作业安全规范研究[J]. 土木工程与管理学报, 2021, 38(06): 137-142+149. |
计量
- PDF下载量(22)
- 文章访问量(720)
- HTML全文浏览量(419)