• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

历史建筑多模态检索方法研究

Research on Multimodal Retrieval Methods for Historical Buildings

  • 摘要: 在HBIM (Historic Building Information Modeling) 数据库中进行信息查询面临三个问题:一是没有普适性的规则判断建筑之间的相似性;二是未考虑建筑本身所包含的历史文化信息;三是查询文本多基于关键词,难以检索到关键词未包含的信息。针对以上问题,提出了一种面向历史建筑的多模态检索方法,用户能通过输入图像或自然语言文本数据,检索到与输入特征相符的建筑,并以列表形式进行排序。在以图像检索建筑时,利用“dino_vit16”模型对图像进行特征提取,所提出的图像-建筑检索方法检索精度达90.08%;在文本检索建筑时则基于CLIP(Contrastive Language-Image Pre-training)模型建立图像和文本的关联,研究了图文相似度和文本相似度权重的取值,选择m =0.6,n =0.4作为权重的最佳配置。实验证明所提出的文本-建筑检索算法对于包含某种外观特征查询语句的检索效果最好,对于描述某种功能和建筑风格的查询语句检索效果最差,而当查询语句中包含4个以上的混合特征,能够描述出建筑的基本面貌时,可以准确地检索到符合条件的建筑。

     

    Abstract: The retrieval of historical buildings in HBIM database faces three main issues: 1) the absence of universal rules for determining the similarity between buildings; 2) the neglect of historical and cultural information inherent to the buildings themselves; 3) most queries rely on keywords, which imposes limitations of available information. Addressing these challenges, this paper introduces a multimodal retrieval approach for historical buildings. Users can retrieve a list of buildings matching their input features, whether through images or natural language text data. For image-based building retrieval, the "dino_vit16" model is employed for feature extraction, achieving a retrieval accuracy of 90.08% with the proposed image-building retrieval method. For text-based building retrieval, a connection between images and text is established through the CLIP model. The study explores the values of image-text similarity and text similarity weights, selecting m=0.6 and n=0.4 as the optimal configuration for these weights. Experimental results have shown that the proposed text-based architectural retrieval algorithm performs best when the query statement contains a specific visual feature, and it performs worst when the query statement describes a particular function and architectural style. However, when the query statement includes four or more mixed features that accurately describe the fundamental appearance of a building, it can accurately retrieve buildings that meet the criteria.

     

/

返回文章
返回