• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

基于改进YOLOv5s的预制叠合板生产质量视觉检测研究

Research on visual inspection of prefabricated composite wall panel production quality based on improved YOLOv5s

  • 摘要: 本文针对预制叠合板预埋件数量缺失、内部钢筋框架不平行和外伸弯钩不合格的视觉检测问题,提出了一种基于改进YOLOv5s模型的目标检测算法。为了解决检测目标物存在干扰的问题,在YOLOv5s模型的主干网络层添加CBAM注意力机制和Transformer模块,再输出网络增加预测模块,以增强模型对图像特征的提取。其中CBAM注意力机制优化了特征通道使得网络更加注重目标物体的特征表示,而Transformer模块能全局捕获图像中的长距离依赖关系,使模型更关注目标层,能够进一步优化模型的输出结果。结果表明:改进的YOLOv5s模型相对于原始的YOLOv5s模型,在三类缺陷检测实验中mAP平均提升了12.24%,改进后的模型在预制叠合板实际生产的质量检测领域具有更强的特征提取能力和特征融合能力。

     

    Abstract: To address visual inspection issues in prefabricated laminated panels, such as missing embedded parts, non-parallel internal reinforcement frames, and non-compliant outward bending hooks, a target detection algorithm based on an improved YOLOv5s model is proposed. To mitigate interference during target detection, the CBAM(Convolutional Block Attention Module) Attention Mechanism and Transformer module are integrated into the backbone network layer of the YOLOv5s model. Additionally, a prediction module is added to the output network to enhance the model's ability to extract image features. The CBAM Attention Module optimizes the feature channels, allowing the network to focus more on the feature representation of the target object. The Transformer Module captures global long-range dependencies in the image, enabling the model to better focus on the target layer, thereby further optimizing the model's output results. The results indicate that the improved YOLOv5s model increases the Mean Average Precision (mAP) by an average of 12.24% compared to the original YOLOv5s model across three types of defect detection experiments. The enhanced model demonstrates superior feature extraction and fusion capabilities in the quality inspection of prefabricated laminated panels.

     

/

返回文章
返回