• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

一种基于卷积自编码器的新型建筑结构健康监测方法研究

Research on a Novel Building Structural Health Monitoring Method Based on Convolutional Autoencoders

  • 摘要: 基于数据驱动的有监督结构健康监测方法,需要收集结构各种损伤状态下的监测数据作为数学模型或人工神经网络的训练数据。为克服有监督方法需要大量有标记训练数据的现实难点,本文首次提出一种新型数据驱动模式的建筑结构健康监测方法。该方法只使用在结构健康状态下采集到的振动数据用以训练一个卷积自编码器,训练过的卷积自编码器可以很好地重建来自相同结构健康状态下获取的测试数据。对于在结构损伤状态下获取的测试数据,在其数据重建过程中会产生一定程度的数据重建损失。实验建立的多层结构数学模型验证了该方法的有效性,同时,不同结构损伤状态下的测试数据对应不同程度的数据重建损失。本文提出的新型结构健康监测方法可以用来准确并及时监测建筑物可能出现的结构损伤。

     

    Abstract: Data-driven based supervised structural health monitoring methods require to collect monitoring data for various damage states of structures as training data for mathematical models or artificial neural networks. To overcome the practical difficulty of requiring a large amount of labeled training data for supervised methods, this paper proposes a novel data-driven building structural health monitoring method. This method only uses vibration data collected from the healthy state of a structure to train a convolutional autoencoder, and the trained convolutional autoencoder can reconstruct the test data obtained from the same healthy state of the structure very well. For the test data obtained from the structural damage states, certain degrees of data reconstruction loss will occur in the data reconstruction process. The experimental multi-layer structure mathematical model verifies the effectiveness of the method, and the test data from different damage states of the structure correspond to different degrees of data reconstruction loss. The novel structural health monitoring method proposed in this paper can be used to accurately and timely monitor the possible structural damage of buildings.

     

/

返回文章
返回