• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

基于Stable Diffusion的LoRA模型训练标签定义对建筑类模型训练效果的影响

The Impact of Label Definitions on the Training Performance of Architecture Models Using LoRA in Stable Diffusion

  • 摘要: 随着深度生成模型在计算机视觉领域的广泛应用,Stable Diffusion模型因其在文本到图像生成任务中的优异表现,已经成为建筑类图像生成的热门选择。然而,建筑类图像生成任务的复杂性要求模型不仅要生成符合建筑设计需求的外观,还要考虑结构、空间布局和材质等多维度特征。因此,如何通过优化模型的训练过程,提高其生成效果,成为了一个重要的研究课题。

     

    Abstract: With the widespread application of deep generative models in the field of computer vision, the Stable Diffusion model has become a popular choice for architectural image generation due to its excellent performance in text-to-image generation tasks. However, the complexity of architectural image generation tasks requires the model to not only generate visuals that meet architectural design requirements, but also to consider multi-dimensional features such as structure, spatial layout, and materials. Therefore, optimizing the model's training process to improve its generation performance has become an important research topic.

     

/

返回文章
返回