• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

面向建筑工程施工碳排放的数字孪生仿真建模与优化控制体系

Digital Twin Simulation Modelling and Optimal Control System for Carbon Emission in Construction

  • 摘要: 在我国碳中和战略与建筑业绿色转型背景下,施工过程碳排放的精细化管理成为亟待解决的核心问题之一。虽然学界指出数字孪生是未来建筑施工低碳化、智能化转型的重点方向之一,但现阶段还未有一套数字孪生体系为建筑工程施工碳排放管理提供指导。本研究基于数字孪生理念,构建了面向建筑工程施工过程碳排放的仿真与优化控制框架体系。通过梳理机械设备、材料运输和人员活动等碳排放源,搭建数据驱动的综合控制体系,以实时监测施工各环节排放。该体系内提出利用离散事件、多智能体和系统动力学等方法,从微观至宏观视角分别对施工流程、设备运作与材料使用进行仿真建模。仿真结果通过智能化算法进行分析提供可视化呈现,为优化策略提供科学依据。仿真后的结果在评价与多目标优化决策体系中,结合施工需求,提出探索偏向性多目标算法以实现动态平衡不同目标的体系。通过可视化与交互式决策,施工管理者可在复杂约束下兼顾可持续与其他施工效益。该体系的提出为数字孪生驱动的施工过程碳排放仿真与优化决策方法提供了一种研究方法,推动施工碳排放智能化管理,并拓展未来应用。

     

    Abstract: Under the context of China's carbon neutrality strategy and the green transformation of the construction industry, the refined management of carbon emissions during construction processes has become a critical issue. Although academia identifies digital twins as a key direction for the low-carbon and intelligent transformation of construction, no comprehensive digital twin system currently exists to guide carbon emission management in construction projects. This study, based on the concept of digital twins, establishes a simulation and optimization control framework for carbon emissions during construction processes. By analyzing emission sources such as machinery, material transportation, and workforce activities, a data-driven integrated control system is designed to monitor emissions in real-time across various construction stages. Within this framework, methods such as discrete events, multi-agent systems, and system dynamics are proposed for simulation modeling, covering processes, equipment operations, and material usage from micro to macro levels. Simulation results are analyzed using intelligent algorithms to provide visualized insights, serving as a scientific basis for optimization strategies. The results, evaluated within a multi-objective optimization and decision-making system, incorporate construction requirements and explore bias-aware multi-objective algorithms to dynamically balance competing goals. Through visualization and interactive decision-making, construction managers can address sustainability alongside other project benefits under complex constraints. This framework offers a research methodology for digital twin-driven simulation and optimization of carbon emissions in construction, advancing intelligent carbon emission management and expanding future applications.

     

/

返回文章
返回