• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

基于数据治理的AI与BIM融合技术在机场智能建造中的应用研究

Application of AI and BIM Integration Technology in Intelligent Airport Construction Based on Data Governance

  • 摘要: 在机场智能建造中,BIM数据异构性高、施工动态预测精度不足以及多源传感器协同效率低等难题制约着工程智能化发展。本文提出一种数据治理驱动的AI-BIM融合技术框架:通过构建基于DAMA2.0的元数据标准化引擎,实现数据预处理效率提升3.8倍;采用改进的ResNet3D-50架构结合通道注意力机制(CBAM模块),显著提升BIM点云的多尺度特征提取能力,达到93.4±0.7%的识别精度,同时模型参数量减少62%;通过物联网(IoT)传感器实时采集数据,结合BIM模型动态更新施工状态,实现高效安全的不停航施工。研究结果表明,该体系显著提升了建设效率和质量,为机场智能建造提供了理论依据与实践指导,具有较强的应用价值和推广意义。

     

    Abstract: The intelligent construction of airports faces critical challenges, including high BIM data heterogeneity, insufficient accuracy in dynamic construction prediction, and low efficiency in multi-source sensor coordination, which hinder engineering intelligence. This study proposes a data governance-driven AI-BIM integration framework. By developing a metadata standardization engine based on DAMA 2.0, data preprocessing efficiency is improved by 3.8 times. An enhanced ResNet3D-50 architecture incorporating a channel attention mechanism (CBAM module) significantly enhances multi-scale feature extraction for BIM point clouds, achieving a recognition accuracy of 93.4±0.7% while reducing model parameters by 62%. Real-time data acquisition via IoT sensors, combined with dynamic BIM model updates, enables efficient and safe airfield construction without disrupting flight operations. The results demonstrate that this system substantially improves construction efficiency and quality This research provides theoretical foundations and practical guidance for intelligent airport construction, offering significant application value and broad promotion potential.

     

/

返回文章
返回