2013, 5(1): 45-53.
框架梁梁端弯矩调幅计算方法研究
1. | 建研科技股份有限公司,北京 100013 |
2. | 中国建筑科学研究院,北京 100013 |
The Simplified Calculation Method of Floor Bending Stiffness
1. | CABR Technology Co., Ltd., Beijing 100013, China |
2. | China Academy of Building Research, Beijing 100013, China |
引用本文:
张艳如, 李云贵, 李守功. 框架梁梁端弯矩调幅计算方法研究[J]. 土木建筑工程信息技术,
2013, 5(1): 45-53.
Citation:
Yanru Zhang, Yungui Li, Shougong Li. The Simplified Calculation Method of Floor Bending Stiffness[J]. Journal of Information Technologyin Civil Engineering and Architecture,
2013, 5(1): 45-53.
摘要:在建筑结构分析中,目前的调幅计算仅对各梁段进行弯矩调节,并未相应调整柱的内力,导致梁柱节点内力不平衡,并且也未考虑到梁刚度变化与梁调幅的关系。本文建议了一种针对结构整体的梁端弯矩调幅计算方法,考虑各梁段刚度变化,通过结构整体有限元分析,实现梁、柱及节点内力平衡的调幅计算。代表性算例计算结果表明,梁端刚度折减系数kd与传统意义上的调幅系数δ之间存在如下关系:kd=7.3δ2-9.8δ+3.5。
Abstract: During the process of the structural analysis, the current amplitude, which only adjusts the beam moment while does not adjust the column internal forces, results in the unbalanced force in the beam-column joints, and does not consider the relation between the change of beam stiffness and the beam amplitude. This article explores one calculation method for the whole structure's amplitude, considering the stiffness change of the each beam. With the structure finite element analysis, the amplitude achieves the balance of beams, columns and joints internal force. Some representative examples of the results show that by reduction of beam end stiffness, the amplitude of frame could be done. When the reduction factor of beam end stiffness is equal to 0.4, the analysis result is consistent with the traditional amplitude coefficient of 0.85.

[1] |
贡金鑫, 魏巍巍等. 中美欧混凝土结构设计[M]. 北京: 中国建筑工业出版社, 2007年12月. |
[2] |
中国工程建设标准化协会《钢筋混凝土连续梁和框架考虑内力重分布设计规程》 (CECS51: 93), 重庆建筑大学, 1993. |
[3] |
Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08)[S]. ACI Committee 318, 2008. |
[4] |
邓宗才, 钢筋混凝土连续梁弯矩调幅法的研究[J]. 建筑结构, 1997年08期. |
[5] |
清华大学土木与环境工程系, 山西省建筑科学研究所. 钢筋混凝土连续粱弯矩调幅限值的试验研究[J]. 建筑技术通讯, 1981年01期. |
[1] |
许春懿. 结构内力调整及其在SATWE中的体现[J]. 土木建筑工程信息技术, 2014, 6(2): 71-74,79. |
[2] |
秦东, 张志远. 砌体结构墙体侧向刚度计算方法的比较[J]. 土木建筑工程信息技术, 2011, 3(4): 97-100. |
[3] |
陈梦龙, 张建奇. 基于工程变更的不平衡报价创收研究[J]. 土木建筑工程信息技术, 2013, 5(2): 31-36. |
[4] |
吴吉明, 周韦博, 衣多. "形意结合"之道 效率与品质的最佳平衡——基于平衡理论的设计方法探索[J]. 土木建筑工程信息技术, 2016, 8(1): 65-70. doi:10.16670/j.cnki.cn11-5823/tu.2016.01.11 |
[5] |
吴海楠. SATWE对柱刚域范围的确定方法及其对结构刚度的影响[J]. 土木建筑工程信息技术, 2015, 7(1): 85-88. |
[6] |
李彤军. 玻璃幕墙自平衡支撑体系计算分析方法——新建武汉站幕墙设计实例[J]. 土木建筑工程信息技术, 2016, 8(3): 84-88. doi:10.16670/j.cnki.cn11-5823/tu.2016.03.16 |
[7] |
胡理, 梁博, 汤学宏. 合理考虑梁受压钢筋的配筋设计方案[J]. 土木建筑工程信息技术, 2011, 3(3): 6-10. |
[8] |
高奎香, 王健, 程拥强. 弯箱梁计算模型的建立及动力计算中若干问题的探讨[J]. 土木建筑工程信息技术, 2010, 2(3): 91-95. |
[9] |
李文华, 赵彦革, 张吉, 潘宁, 杜文博, 方伟. 基于ANSYS的钢筋混凝土浅梁单调加载变形的数值模拟[J]. 土木建筑工程信息技术, 2010, 2(3): 83-90. |
[10] |
严亚林, 金新阳. 中欧规范无腹筋梁抗剪承载力计算比较[J]. 土木建筑工程信息技术, 2010, 2(1): 86-89. |
[11] |
冯青, 陆小龙, 汪德江, 李珂. 基于BIM的装配整体式混凝土梁的拆分研究[J]. 土木建筑工程信息技术, 2016, 8(5): 83-85. doi:10.16670/j.cnki.cn11-5823/tu.2016.05.15 |
[12] |
孙云鹏, 刁波, 刘文鹏. 基于BIM技术的高性能钢纤维混凝土梁截面非线性分析[J]. 土木建筑工程信息技术, 2010, 2(3): 66-71. |
[13] |
唐建昌. 大跨预应力混凝土连续梁桥的施工控制研究[J]. 土木建筑工程信息技术, 2014, 6(4): 98-102. |
[14] |
王丽, 邓思华. 基于ABAQUS的混凝土梁受弯破坏实验非线性分析[J]. 土木建筑工程信息技术, 2010, 2(1): 64-67. |
[15] |
唐国武, 王伟, 杜伸云, 陈宝民. BIM在合肥南环线钢桁梁柔性拱桥施工中的应用[J]. 土木建筑工程信息技术, 2011, 3(4): 76-81. |
[16] |
张艳如, 张汉义, 李守功. 基于Brep表达的IFC格式弧形梁实体信息的获取[J]. 土木建筑工程信息技术, 2013, 5(2): 1-4,36. |
[17] |
安东亚. 连梁破坏对框架-核心筒结构双重防线及抗震性能的影响分析[J]. 土木建筑工程信息技术, 2013, 5(5): 5-49. |
计量
- PDF下载量(4)
- 文章访问量(142)
- HTML全文浏览量(71)