• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

2021, 13(3): 24-29. doi: 10.16670/j.cnki.cn11-5823/tu.2021.03.04

BIM语义丰富研究与应用综述

大连理工大学 建设管理系,大连 116024

网络出版日期: 2021-06-01

作者简介: 姜韶华(1971-),男,副教授,博士,主要研究方向:信息技术支持的工程管理

基金项目: 国家自然科学基金面上项目“数据与知识双驱动的建筑工程施工质量智能合规性检查与问题防治研究” 52078101

A Review for Research and Application of Semantic Enrichment for BIM

Dalian University of Technology, Department of Construction Management, Dalian 116024, China

Available Online: 2021-06-01

引用本文: 姜韶华, 张博. BIM语义丰富研究与应用综述[J]. 土木建筑工程信息技术, 2021, 13(3): 24-29. doi: 10.16670/j.cnki.cn11-5823/tu.2021.03.04

Citation: Shaohua Jiang, Bo Zhang. A Review for Research and Application of Semantic Enrichment for BIM[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2021, 13(3): 24-29. doi: 10.16670/j.cnki.cn11-5823/tu.2021.03.04

摘要:近年来,随着BIM在建设项目管理中的应用不断深入,BIM在语义方面逐渐面临着更高的要求。BIM语义丰富已经逐渐成为当前研究热点,但目前仍缺乏关于BIM语义丰富的全面综述。因此,本文在广泛文献调研的基础上从方法和应用两个方面对BIM语义丰富进行了全面的回顾,梳理了BIM语义丰富研究涉及的关键技术及其应用现状,并分析和总结了现有研究的不足,为进一步开展BIM语义丰富相关研究及应用提供了参考。

关键词: BIM, 语义丰富, 语义Web, 基于规则的推理, 机器学习
[1]

Obrock L S, Gülch E. First steps to automated interior reconstruction from semantically enriched point clouds and imagery[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 781-787.

[2]

Babacan K, Chen L, Sohn G. Semantic segmentation of indoor point clouds using convolutional neural network[C]//ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 101-108.

[3]

Belsky M, Sacks R, Brilakis I. Semantic Enrichment for Building Information Modeling[J]. Computer‐Aided Civil and Infrastructure Engineering, 2016, 31(4): 261-274.doi: 10.1111/mice.12128

[4]

Yin X, Liu H, Chen Y, et al. Building information modelling for off-site construction: Review and future directions[J]. Automation in Construction, 2019, 101: 72-91.doi: 10.1016/j.autcon.2019.01.010

[5]

Czerniawski T, Leite F. Automated digital modeling of existing buildings: A review of visual object recognition methods[J]. Automation in Construction, 2020, 113: 1-19. 

[6]

Pauwels P, Zhang S, Lee Y. Semantic web technologies in AEC industry: A literature overview[J]. Automation in Construction, 2017, 73: 145-165.doi: 10.1016/j.autcon.2016.10.003

[7]

Farias T, Roxin A, Nicolle C, et al. A Rule Based System for Semantical Enrichment of Building Information Exchange[C]//Proceedings of the RuleML 2014 Challenge and the RuleML 2014 Doctoral Consortium, 2014, 2-9.

[8]

Pauwels P, Terkaj W. EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology[J]. Automation in Construction, 2016, 63: 100-133.doi: 10.1016/j.autcon.2015.12.003

[9]

Bloch T, Sacks R. Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models[J]. Automation in Construction, 2018, 91: 256-272.doi: 10.1016/j.autcon.2018.03.018

[10]

Sacks R, Kedar A, Borrmann A, et al. SeeBridge as next generation bridge inspection: Overview, Information Delivery Manual and Model View Definition[J]. Automation in Construction, 2018, 90: 134-145.doi: 10.1016/j.autcon.2018.02.033

[11]

Wu J, Zhang J. Automated BIM Object Classification to Support BIM Interoperability[C]//Construction Research Congress 2018: Sustainable Design and Construction and Education, 2018, 706-715.

[12]

Song J, Kim J, Lee J. Spatial information enrichment using NLP-based classification of space objects for school bldgs. in Korea[C]//Proceedings of the 36th International Symposium on Automation and Robotics in Construction, 2019, 415-420.

[13]

Koo B, La S, Cho N, et al. Using support vector machines to classify building elements for checking the semantic integrity of building information models[J]. Automation in Construction, 2019, 98: 183-194.doi: 10.1016/j.autcon.2018.11.015

[14]

Ferguson M, Jeong S, Law K H. Worksite Object Characterization for Automatically Updating Building Information Models[C]//Computing in Civil Engineering 2019: Visualization, Information Modeling, and Simulation, 2019, 303-311.

[15]

Ma L, Sacks R. A cloud-based BIM platform for information collaboration[C]//ISARC 2016-33rd International Symposium on Automation and Robotics in Construction, 2016, 581-589.

[16]

Ismail A, Srewil Y, Scherer R, et al. Semantic enrichment and multimodel data exchange approach for CFD analysis of bridges[C]//23rd International Workshop of the European Group for Intelligent Computing in Engineering, 2016, 1-9.

[17]

Xiong X, Adan A, Akinci B, et al. Automatic creation of semantically rich 3D building models from laser scanner data[J]. Automation in Construction, 2013, 31: 325-337.doi: 10.1016/j.autcon.2012.10.006

[18]

Sacks R, Bloch R, Katz M, et al. Automating Design Review with Artificial Intelligence and BIM: State of the Art and Research Framework[C]//Computing in Civil Engineering 2019: Visualization, Information Modeling, and Simulation, 2019, 353-360.

[19]

Santos R, Costa A A, Silvestre J D, et al. Development of a BIM-based Environmental and Economic Life Cycle Assessment tool[J]. Journal of Cleaner Production, 2020, 265: 1-17. 

[20]

Atyabi S, Kiavarz Moghaddam M, Rajabifard A. Optimization of emergency evacuation in fire building by integrated BIM and GIS[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 2019, 131-139.

[21]

Kim M, Wang Q, Park J, et al. Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM[J]. Automation in Construction, 2016, 72: 102-114.doi: 10.1016/j.autcon.2016.08.035

[22]

Jeong Y S, Eastman C M, Sacks R, et al. Benchmark tests for BIM data exchanges of precast concrete[J]. Automation in Construction, 2008, 18(4): 469-484. 

[23]

Hamledari H, Azar E R, McCabe B. IFC-Based Development of As-Built and As-Is BIMs Using Construction and Facility Inspection Data: Site-to-BIM Data Transfer Automation[J]. Journal of Computing in Civil Engineering, 2017, 32(2): 1-15. 

[24]

Golparvar-Fard M, Peña-Mora F, Savarese S. Automated Progress Monitoring Using Unordered Daily Construction Photographs and IFC-Based Building Information Models[J]. Journal of Computing in Civil Engineering, 2015, 29. 

[25]

Hamledari H, McCabe B, Davari S, et al. Automated Schedule and Progress Updating of IFC-Based 4D BIMs[J]. Journal of Computing in Civil Engineering, 2017, 31: 1-16. 

[26]

Arslan M, Cruz C, Ginhac D. Semantic Enrichment of Spatio-temporal Trajectories for Worker Safety on Construction Sites[C]//The 9th International Conference on Ambient Systems, Networks and Technologies, 2018, 271-278.

[27]

Arslan M, Cruz C, Ginhac D. Semantic enrichment of spatio-temporal trajectories for worker safety on construction sites[J]. Personal and Ubiquitous Computing, 2019, 23: 749-764.doi: 10.1007/s00779-018-01199-5

[28]

Arslan M, Cruz C, Ginhac D. Identifying Intrusions in Dynamic Environments Using Semantic Trajectories and BIM for Worker Safety[C]//Fourth International Congress on Information and Communication Technology. Advances in Intelligent Systems and Computing. Springer, Singapore, 2020, 59-67.

[29]

Bortoluzzi B, Efremov I, Medina C, et al. Automating the creation of building information models for existing buildings[J]. Automation in Construction, 2019, 105: 1-13. 

[30]

O'Donnell J, Truong-Hong L, Boyle N, et al. LiDAR point-cloud mapping of building facades for building energy performance simulation[J]. Automation in Construction, 2019, 107: 1-16. 

[31]

Maietti F, Di Giulio R, Piaia E, et al. Enhancing Heritage fruition through 3D semantic modelling and digital tools: The INCEPTION project[C]//IOP Conference Series: Materials Science and Engineering, 2018, 1-8.

[32]

Themistocleous K, Ioannides M, Georgiou S, et al. The innovative documentation of cultural heritage using H-BIM: Case study of Asinou church[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2018.

[33]

Simeone D, Cursi S, Acierno M. BIM semantic-enrichment for built heritage representation[J]. Automation in Construction, 2018, 122-137. 

[34]

Han R, Mo W, Shao D. Research on the Construction Strategy of Information Model for Manchuria Style Architecture and Its Application[J]. International Journal of Smart Home, 2016, 10(7): 175-184.doi: 10.14257/ijsh.2016.10.7.18

[35]

Kim M, Wang Q, Park J, et al. Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM[J]. Automation in Construction, 2016, 72: 102-114.doi: 10.1016/j.autcon.2016.08.035

[1]

李秉展, 罗紫萍, 龙丹冰. 基于机器学习的智慧BIM运维管理系统及BIM+MR的检修应用程序——以医院建筑为例[J]. 土木建筑工程信息技术, 2017, 9(6): 22-27. doi:10.16670/j.cnki.cn11-5823/tu.2017.06.04

[2]

丘衍航, 高光林, 曹国. 语义交换对象在交换模型中的使用[J]. 土木建筑工程信息技术, 2013, 5(5): 107-109, 113.

[3]

朱伟铸, 郑加柱. Web端快速加载BIM模型的方法研究[J]. 土木建筑工程信息技术, 2021, 13(2): 97-104. doi:10.16670/j.cnki.cn11-5823/tu.2021.02.14

[4]

杜明芳. 基于BIM+Multi-Agent增强学习的智慧建筑及城市运维软件设计[J]. 土木建筑工程信息技术, 2018, 10(6): 1-9. doi:10.16670/j.cnki.cn11-5823/tu.2018.06.01

[5]

曾雯琳, 袁竞峰, 张星. 基于BIM模型的DfS规则应用研究[J]. 土木建筑工程信息技术, 2014, 6(4): 18-23.

[6]

严旭, 范盛颖, 周光炳. BIM结构设计模型与计算软件贯通的研究[J]. 土木建筑工程信息技术, 2017, 9(2): 84-87. doi:10.16670/j.cnki.cn11-5823/tu.2017.02.14

[7]

黄传浩. BIM设计在鞍山市体育中心游泳馆中的应用[J]. 土木建筑工程信息技术, 2010, 2(1): 47-52.

[8]

迟小羽, 郑国勤, 王琳, 于贵友. BIM及建筑CAD软件中几何造型内核的评估及应用研究[J]. 土木建筑工程信息技术, 2014, 6(3): 1-8.

[9]

张军, 朱贺, 魏树臣, 李凯. 3D打印模型及BIM模型Web嵌入应用[J]. 土木建筑工程信息技术, 2017, 9(3): 58-62. doi:10.16670/j.cnki.cn11-5823/tu.2017.03.10

[10]

张金辉, 张其林, 刘金典. 基于BIM的装配式建造信息系统研究[J]. 土木建筑工程信息技术, 2020, 12(3): 22-30. doi:10.16670/j.cnki.cn11-5823/tu.2020.03.04

[11]

周戟, 闫召祥, 田英林, 赵国录, 董泊君. 心理资本视角下施工人员对BIM的变革抵制研究[J]. 土木建筑工程信息技术, 2017, 9(6): 83-88. doi:10.16670/j.cnki.cn11-5823/tu.2017.06.14

[12]

王兴鲁, 刘昭, 吴洋, 李娅冉. BIM技术在铁路站房项目建设管理中的综合应用研究[J]. 土木建筑工程信息技术, 2019, 11(1): 64-69. doi:10.16670/j.cnki.cn11-5823/tu.2019.01.10

[13]

赵华英, 叶红华, 陈陟, 陆扬, 石云轩, 卢旦, 周智, 赵亮, 孙广礼, 葛琳, 梁士毅. 保利大厦基坑5D监测中的新兴呈现(Emerging)技术[J]. 土木建筑工程信息技术, 2014, 6(4): 36-41.

[14]

吴吉明, 张庆利. 从构思到实现—移动平台上的设计与云应用研究[J]. 土木建筑工程信息技术, 2013, 5(5): 11-19.

[15]

陈康, 李希胜. 基于BIM的结构健康监测研究[J]. 土木建筑工程信息技术, 2020, 12(2): 15-21. doi:10.16670/j.cnki.cn11-5823/tu.2020.02.03

[16]

李犁, 邓雪原. 基于BIM技术的建筑信息平台的构建[J]. 土木建筑工程信息技术, 2012, 4(2): 25-29.

[17]

董建峰, 梁晓. 基于数据协同的日本勘察设计行业信息化发展[J]. 土木建筑工程信息技术, 2010, 2(3): 104-110.

[18]

佘长岗, 刘文伍, 罗兰. 基于BIM构件库的激励机制研究[J]. 土木建筑工程信息技术, 2016, 8(3): 32-38. doi:10.16670/j.cnki.cn11-5823/tu.2016.03.06

[19]

陈远, 岳石花. 基于HBase的BIM模型存储技术研究[J]. 土木建筑工程信息技术, 2017, 9(4): 74-81. doi:10.16670/j.cnki.cn11-5823/tu.2017.04.14

[20]

陆海燕, 钟铁夫, 王秀文. 基于BIM的框架结构参数化设计研究[J]. 土木建筑工程信息技术, 2015, 7(5): 107-112. doi:10.16670/j.cnki.cn11-5823/tu.2015.05.19

计量
  • PDF下载量(17)
  • 文章访问量(175)
  • HTML全文浏览量(76)
目录

Figures And Tables

BIM语义丰富研究与应用综述

姜韶华, 张博

  • 版权所有© 《土木建筑工程信息技术》编辑部
  • 京ICP备17057008号
  • 地址:北京市朝阳区兴化路2号院1号楼
  • 电话:010-64517910 邮编:100013
  • 微信号:tmxxjs  QQ:342182902  E-mail:tmxxjs@163.com
本系统由北京仁和汇智信息技术有限公司设计开 技术支持: info@rhhz.net