2020, 12(1): 30-38. doi: 10.16670/j.cnki.cn11-5823/tu.2020.01.05
基于BIM技术和BP神经网络的成都理工大学图书馆天然采光研究
1. | 成都理工大学 环境与土木工程学院,成都 610059 |
2. | 成都理工大学 网络安全学院,成都 610059 |
3. | 成都理工大学 旅游与城乡规划学院,成都 610059 |
4. | 成都理工大学 材料与化学化工学院,成都 610059 |
5. | 电子科技大学 公共管理学院,成都 610054 |
Study on Natural Lighting Design for CDUT Library Based on BIM and BP Neural Network
1. | College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China |
2. | College of Network Security, Chengdu University of Technology, Chengdu 610059, China |
3. | College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China |
4. | College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China |
5. | School of Public Affairs and Administration, University of Electric Science and Technology of China, Chengdu 610054, China |
引用本文: 蒋佳欣, 王博, 王猛, 蔡宋刚, 倪婷, 敖仪斌, 刘燕. 基于BIM技术和BP神经网络的成都理工大学图书馆天然采光研究[J]. 土木建筑工程信息技术, 2020, 12(1): 30-38. doi: 10.16670/j.cnki.cn11-5823/tu.2020.01.05
Citation: Jiang Jiaxin, Wang Bo, Wang Meng, Cai Songgang, Ni Ting, Ao Yibin, Liu Yan. Study on Natural Lighting Design for CDUT Library Based on BIM and BP Neural Network[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2020, 12(1): 30-38. doi: 10.16670/j.cnki.cn11-5823/tu.2020.01.05
摘要:天然光营造的光环境以经济、自然、宜人、不可替代等特性为人们所习惯和喜爱。天然采光不仅有利于照明节能,而且有利于增加室内外的自然信息交流,改善空间卫生环境,调节空间使用者的心情。在建筑中充分利用天然光,对于创造良好光环境、节约能源、保护环境和构建绿色建筑具有重要意义。因此,优化建筑采光设计是很有必要的。本文提出了一个基于BIM技术和BP神经网络的建筑物天然采光分析思路,以成都理工大学图书馆为例,利用Revit软件建立三维可视化模型,生成gbXML格式的建筑物信息文件,再将gbXML文件导入Ecotect软件,在Ecotect软件内对图书馆的室内光环境进行模拟分析,计算自然采光系数,并定量分析窗台高度、玻璃透光率和墙体材料光反射率对室内光环境的影响。最后借助Weka软件,建立基于BP算法的神经网络模型,得到可预测在最优采光系数下变量变化范围的BP神经网络模型。
Abstract: The light environment created by natural light is preferred by public due to its own economic, natural, pleasant and irreplaceable characteristics. Natural lighting is not only conducive to energy conservation of lighting, but also conducive to increasing the exchange of natural information indoor and outdoor, improving the space health environment and regulating the mood of space users. Making full use of the natural light in the building is of great significance for creating a good light environment, saving energy, protecting the environment and building green buildings. Therefore, it is necessary to optimize the lighting design of buildings. This paper puts forward an idea of natural lighting analysis in building based on the BIM technology and the BP neural network. Taking the CDUT library (library of Chengdu University of Technology) as an example, a 3D visualization model is established by using Revit software to generate the building information file in gbXML format. Then, the gbXML file is imported into Ecotect software to simulate and analyze the indoor light environment of the library, to calculate the natural lighting coefficient, and to quantitatively analyze the impact of window height, glass transmittance and wall material light reflectivity on the indoor light environment. At last, with the help of Weka software, the neural network model based on BP algorithm is established, obtaining the BP neural network model which can predict the variation range of variables under the optimal lighting coefficient.
[1] |
徐莉, 朱少君. BIM技术在绿色建筑设计中的应用[J].住宅科技, 2018, (8): 22-27.doi: 10.3969/j.issn.1002-0454.2018.08.005 |
[2] |
孙敬.基于Ecotect模拟分析的校园建筑室内光环境研究[J].河北工程大学学报(自然科学版), 2015, (3): 78-82.doi: 10.3969/j.issn.1673-9469.2015.03.019 |
[3] |
哈维·伯恩斯坦, 斯蒂芬·琼斯, 米歇尔·罗素.绿色BIM如何助力绿色设计和建造[J].土木建筑工程信息技术, 2015, 7(2): 20-36.doi: 10.3969/j.issn.1674-7461.2015.02.004 |
[4] |
吴伟, 梁铭, 彭杰, 等.室内自然采光BIM模拟分析研究概述[J].土木建筑工程信息技术, 2016, 8(6): 18-22. |
[5] |
Dabe, TJ, Dongre, AR. Analysis of performance of the daylight into critical liveable area of "type design" dwelling unit on the basis of daylight metrics for hot and dry climate[J]. INDOOr and BUILT ENVIRONMENT, 2018, (27): 129-142. |
[6] | |
[7] |
张国华, 郭敏, 霍婕, 等. BIM技术在绿色建筑全生命周期的应用——以北京市某医院建筑为例[J].技术与应用, 2015, (4): 82-84.doi: 10.3969/j.issn.1007-1059.2015.04.010 |
[8] |
周吾波, 何振宇, 王鹏, 等.绿色建筑节能技术应用研究——以苏州明鑫环保科技大楼为例[J].土木建筑工程信息技术, 2016, 8(5): 90-94. |
[9] |
Sher, F, Kawai, A, Gulec, F. Sustainable energy saving alternatives in small buildings[J]. SUSTAINABLE ENERGY TECHNOLOGIEs and ASSESSMENTS, 2019, (32): 92-99. |
[10] |
WAQAR T, DEMETGUL M. Thermal analysis MLP neural network-based fault diagnosis on worm gears[J]. Measurement, 2016, 86:56-66.DOI: 10.1016/j. measurement. 2016, 2(24).doi: 10.1016/j.measurement.2016,2(24) |
[11] |
李艳晴, 修春波, 张欣.基于卡尔曼滤波的迟滞神经网络风速序列预测[J].北京科技大学学报, 2014, (8): 118-124. |
[12] |
高阳.应急成品粮储备库工程造价估算方法研究[D].北京邮电大学, 2017. |
[13] |
胡志辉.基于光纤光栅的复合材料结构健康监测研究[D].南京航空航天大学, 2014. |
[14] |
Ferreira, RP; Martiniano, A; Ferreira, A, et al. Study on Daily Demand Forecasting Orders Using Artificial Neural Network[J]. IEEE LAtin AMERICA TRANSACTIONS, 2016, (14): 129-142. |
[15] |
Autodesk, lnc. Autodesk Ecotect Analysis绿色建筑分析应用[M].北京:电子工业出版社, 2016:17-18. |
计量
- PDF下载量(40)
- 文章访问量(2370)
- HTML全文浏览量(1252)