• ISSN: 1674-7461
  • CN: 11-5823/TU
  • Hosted by: China Society and Technology Association
  • Organizer: China Graphics Society
  • Guidance: China Academy of Building Research

Citation: Xianguo Wu, Jun Liu, Hongyu Chen, Wen Xu, Xi Liu. Digital Twin Frame System of Shield Tunneling System. Journal of Information Technologyin Civil Engineering and Architecture, 2023, 15(4): 105-110. doi: 10.16670/j.cnki.cn11-5823/tu.2023.04.18

2023, 15(4): 105-110. doi: 10.16670/j.cnki.cn11-5823/tu.2023.04.18

Digital Twin Frame System of Shield Tunneling System

1. 

Shool of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore

Corresponding author: 刘俊,

Web Publishing Date: 2023-08-30

Fund Project: 国家自然科学基金 51378235国家自然科学基金 71571078国家重点研发计划 2016YFC0800208国家自然科学基金 51308240

[1]

杜明芳. 基于数字孪生的智慧建筑系统集成研究[J]. 土木建筑工程信息技术, 2020, 12(6): 44-8. 

[2]

刘占省, 李安修, 孟鑫桐, 等. 装配式建筑吊装安全风险管理数字孪生模型建立方法[J]. 土木建筑工程信息技术, 2022, 14(3): 26-33. 

[3]

Bondarenko O, Fukuda T. Development of a diesel engine's digital twin for predicting propulsion system dynamics [J]. Energy, 2020, 196: 117126.doi: 10.1016/j.energy.2020.117126

[4]

郭飞燕, 刘检华, 邹方, 等. 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55(17): 110-32. 

[5]

Wang M, Wang C, Hnydiuk-Stefan A, et al. Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions [J]. Ocean Engineering, 2021, 232: 109168.doi: 10.1016/j.oceaneng.2021.109168

[6]

Coraddu A, Oneto L, Baldi F, et al. Data-driven ship digital twin for estimating the speed loss caused by the marine fouling [J]. Ocean Engineering, 2019, 186: 106063.doi: 10.1016/j.oceaneng.2019.05.045

[7]

黄澄, 袁东风, 张海霞. 基于狮群算法的数字孪生车间调度问题优化[J]. 山东大学学报(工学版), 2021, 51(4): 17-23+34. 

[8]

郭岳. 基于数字孪生技术的矿井风流调控虚拟系统设计与开发[D]; 长安大学, 2020.

[9]

陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18. 

[10]

经海翔, 黄友锐, 徐善永, 等. 基于数字孪生和概率神经网络的矿用通风机预测性故障诊断研究[J]. 工矿自动化, 2021, 47(11): 53-60. 

[11]

李双宇, 张明凯, 刘艳臣, 等. 基于LSTM模型的排水系统流量预测研究[J]. 中国给水排水, 2022, 38(5): 59-64. 

Metrics
  • PDF Downloads(46)
  • Abstract views(2075)
  • HTML views(1048)
Catalog

Figures And Tables

Digital Twin Frame System of Shield Tunneling System

Xianguo Wu, Jun Liu, Hongyu Chen, Wen Xu, Xi Liu

  • Copyright © Journal of Information Technologyin Civil Engineering and Architecture Editorial Office
  • 京ICP备17057008号
  • Address:No.30 Bei San Huan Dong Lu,Beijing 100013,China
  • Tel:010-64517910 Postcode:100013
  • Wechat:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn