Citation: Li Jiequan. Experimental Study on Bearing Capacity of Rock-Socketed Piles Covered by Overfilled Soil. Journal of Information Technologyin Civil Engineering and Architecture, 2019, 11(2): 106-110. doi: 10.16670/j.cnki.cn11-5823/tu.2019.02.18
2019, 11(2): 106-110. doi: 10.16670/j.cnki.cn11-5823/tu.2019.02.18
Experimental Study on Bearing Capacity of Rock-Socketed Piles Covered by Overfilled Soil
Guangxi Ruiyu Construction Technology Co., Ltd., Nanning 530003, China |
In order to study the characteristics of bearing capacity of rock-socketed piles covered by overfilled soil, this paper carries out static compression tests on two rock-socked piles in the project of Nanning No.3 Middle School international school, and analyzes the variation law of axial force, lateral friction resistance of pile body and resistance of pile tip with load. The test results show that the lateral friction resistance of the soil layer around the pile and the end bearing capacity of the pile tip together constitute the bearing capacity of the rock-socketed pile with the vertical load. As the depth increases, the axial force of the test pile gradually decreases. When the load on the pile top increases, the corresponding axial force decreases faster. In overfilled soil, pile filling coefficient is relatively large, and the end resistance of medium-weathering siltstone occupies a small proportion of the total loading load. Therefore, during the construction process, the mud thickness of the mud retaining wall should be strictly controlled, and the detection of sediment thickness should be strengthened. it is suggested that the grouting technology of pile bottom should be adopted to give full play to the resistance of pile tip.
[1] |
赵英光.深基础工程发展的现状和趋势[J].铁道建筑技术, 2013(z2): 147-150.doi: 10.3969/j.issn.1009-4539.2013.z2.044 |
[2] |
苗德滋, 张明义, 白晓宇, 等.青岛地区嵌岩打入桩工程质量分析[J].工程勘察, 2018, 46(09): 1-5. |
[3] |
王卫东, 吴江斌, 聂书博.武汉绿地中心大厦大直径嵌岩桩现场试验研究[J].岩土工程学报, 2015, 37(11): 1945-1954.doi: 10.11779/CJGE201511002 |
[4] | |
[5] |
龚维明, 戴国亮, 宋晖, 等.大直径深长嵌岩桩承载机理研究与应用[M].北京:人民交通出版社, 2015: 110. |
[6] |
刘闯, 冯忠居, 张福强, 等.地震作用下特大型桥梁嵌岩桩基础动力响应[J].交通运输工程学报, 2018, 18(04): 53-62.doi: 10.3969/j.issn.1671-1637.2018.04.006 |
[7] |
张方华.循环荷载下钢管混凝土嵌岩桩水平承载力计算方法[D].重庆交通大学, 2018. |
[8] |
龚成中, 龚维明, 何春林, 等.孔壁粗糙度对深嵌岩桩承载特性的影响[J].中国公路学报, 2011, 24(02): 56-61.doi: 10.3969/j.issn.1001-7372.2011.02.010 |
[9] |
张琦, 刘军, 戴国亮, 等.大直径嵌岩桩桩端极限承载力计算方法[J].东南大学学报(自然科学版), 2018, 48(01). |
[10] | |
[11] |
万志辉, 戴国亮, 龚维明, 等.基于自平衡法后压浆灌注桩荷载传递函数的变化分析[J].土木工程学报, 2017, 50(08). |
[12] |
李安钡.大直径嵌岩桩承载特性研究[D].重庆交通大学, 2017. |
[13] |
陈小钰, 张明义, 白晓宇, 等.深厚回填土中嵌岩灌注桩承载性状现场试验研究[J].中南大学学报(自然科学版), 2018, 49(07): 1799-1807. |
[14] | |
[15] |
王田龙, 黄质宏, 张飞, 等.基于自平衡法的较破碎岩石地基嵌岩桩承载性状研究[J].贵州大学学报(自然科学版), 2015, 32(05). |
[16] | |
[17] |
罗勇, 李春峰, 邢皓枫.基于分布式光纤测试技术的大直径嵌岩桩承载性能研究[J].岩土力学, 2014, 35(05): 1406-1412+1420. |
[18] |
郭骞, 吴宪锴, 杜海鑫.浑河大桥嵌岩桩水平加载试验研究[J].水利与建筑工程学报, 2017, 15(05): 144-148.doi: 10.3969/j.issn.1672-1144.2017.05.025 |
[19] |
文华, 程谦恭, 宋章.桩(墙)单位侧摩阻力与轴向应变关系的解析解及其应用[J].岩土力学, 2008, 29(12): 3342-3348.doi: 10.3969/j.issn.1000-7598.2008.12.031 |
Metrics
- PDF Downloads(17)
- Abstract views(2114)
- HTML views(1276)