• ISSN: 1674-7461
  • CN: 11-5823/TU
  • Hosted by: China Society and Technology Association
  • Organizer: China Graphics Society
  • Guidance: China Academy of Building Research

Citation: Xiongbin Li, Yan Zhou, Cheng Zhou. Research and Prospect on Filament Winding Construction Technology. Journal of Information Technologyin Civil Engineering and Architecture, 2024, 16(2): 1-11. doi: 10.16670/j.cnki.cn11-5823/tu.2024.02.01

2024, 16(2): 1-11. doi: 10.16670/j.cnki.cn11-5823/tu.2024.02.01

Research and Prospect on Filament Winding Construction Technology

1. 

National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: 周诚,

Web Publishing Date: 2024-04-20

Fund Project: 国家重点研发计划课题 2021YFF0500300

[1]

Erden S, Ho K. Fiber reinforced composites[M]//Fiber Technology for Fiber-Reinforced Composites. Woodhead Publishing, 2017: 51-79.

[2]

Bhatt A T, Goh il P P, Chaudhary V. Primary manufacturing processes for fiber reinforced composites: History, development & future research trends[C]//IOP conference series: materials science and engineering. IOP Publishing, 2018, 330(1): 012107.

[3]

宋绪丁, 庞利沙. 碳纤维树脂基复合材料及成型工艺与应用研究进展[J]. 包装工程, 2021, 42(14): 81-91. 

[4]

谢霞, 邱冠雄, 姜亚明. 纤维缠绕技术的发展及研究现状[J]. 天津工业大学学报, 2004(06): 19-22+29. 

[5]

Azeem M, Ya H H, Kumar M, et al. Application of filament winding technology in composite pressure vessels and challenges: a review[J]. Journal of Energy Storage, 2022, 49: 103468.doi: 10.1016/j.est.2021.103468

[6]

王巧玲, 魏栋, 李光俊, 等. FRP复合材料管材航空应用及成型技术研究现状[J]. 航空制造技术, 2020, 63(22): 92-101. 

[7]

Skinner M L. Tren ds, Advances and innovations in filament winding[J]. Reinforced Plastics, 2006, 50(2): 28-33.doi: 10.1016/S0034-3617(06)70912-2

[8]

王瑛琪, 盖登宇, 宋以国. 纤维缠绕技术的现状及发展趋势[J]. 材料导报, 2011, 25(05): 110-113. 

[9]

Qua njin M, Rejab M R M, Idris M S, et al. Filament winding technique: SWOT analysis and applied favorable factors[J]. SCIREA Journal of Mechanical Engineering, 2019, 3(1): 1-25.

[10]

Ansari S M, Ghazali C M R, Husin K. Natural fiber filament wound composites: a review[C]//MATEC web of conferences. EDP Sciences, 2017, 97: 01018.

[11]

Shrigandhi G D, Kothavale B S. Biodegradable composites for filament winding process[J]. Materials Today: Proceedings, 2021, 42: 2762-2768.doi: 10.1016/j.matpr.2020.12.718

[12]

刘美军. 植物纤维缠绕复合材料成型机理及其优化研究[D]. 哈尔滨理工大学, 2020.

[13]

闫清峰, 张纪刚. 纤维增强复合材料在土木工程中的应用与发展[J]. 科学技术与工程, 2021, 21(36): 15314-15322. 

[14]

司翔, 曾少敏, 刘汝超, 等. 纤维材料在高层建筑中的应用现状与发展方向[J]. 合成纤维, 2022, 51(10): 41-44+71. 

[15]

苏亚欣. 纤维复合材料在土木建筑工程中的应用研究[J]. 合成材料老化与应用, 2022, 51(02): 154-156. 

[16]

丁毅峰. 各向异性结构复合材料的数字化设计建造研究[D]. 北方工业大学, 2022.

[17]

Quanjin M, Rejab M, Idris M, et al. Robotic filament winding technique (RFWT) in industrial application: A review of state of the art and future perspectives[J]. Int. Res. J. Eng. Technol, 2018, 5(12): 1668-1676.

[18]

Sorrentino L, Anamat eros E, Bellini C, et al. Robotic filament winding: An innovative technology to manufacture complex shape structural parts[J]. Composite Structures, 2019, 220: 699-707.doi: 10.1016/j.compstruct.2019.04.055

[19]

杨海. 复合材料纤维缠绕机器人关键技术研究[D]. 哈尔滨理工大学, 2020.

[20]

Knippers J, La Ma gna R, Menges A, et al. ICD/ITKE research pavilion 2012: coreless filament winding based on the morphological principles of an arthropod exoskeleton[J]. Architectural Design, 2015, 85(5): 48-53.doi: 10.1002/ad.1953

[21]

Dörstelmann M, Kni ppers J, Menges A, et al. ICD/ITKE Research Pavilion 2013‐14: Modular Coreless Filament Winding Based on Beetle Elytra[J]. Architectural Design, 2015, 85(5): 54-59.doi: 10.1002/ad.1954

[22]

Dörstelmann M, Knippers J, Koslowski V, et al. ICD/ITKE research pavilion 2014–15: Fibre placement on a pneumatic body based on a water spider web[J]. Architectural Design, 2015, 85(5): 60-65.doi: 10.1002/ad.1955

[23]

La Magna R, Waimer F, Knippers J. Coreless Winding and Assembled Core–Novel fabrication approaches for FRP based components in building construction[J]. Construction and Building Materials, 2016, 127: 1009-1016.doi: 10.1016/j.conbuildmat.2016.01.015

[24]

Duque Estrada R, Kannenberg F, Wagner H J, et al. Spatial winding: cooperative heterogeneous multi-robot system for fibrous structures[J]. Construction Robotics, 2020, 4: 205-215.doi: 10.1007/s41693-020-00036-7

[25]

Yang X, Lehreck e A, Tucker C, et al. Spatial Lacing: A Novel Composite Material System for Fibrous Networks[C]//Towards Radical Regeneration: Design Modelling Symposium Berlin 2022. Cham: Springer International Publishing, 2022: 556-568.

[26]

Koslowski V, So lly J, Knippers J. Structural design methods of component based lattice composites for the Elytra Pavilion[C]//Proceedings of the IASS Annual Symposium. 2017.

[27]

Felbrich B, Frueh N, Prado M, et al. Multi-machine fabrication: an integrative design process utilising an autonomous UAV and industrial robots for the fabrication of long-span composite structures[C]//Acadia 2017 Disciplines & Disruption: Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture. 2017: 248-259.

[28]

Dambrosio N, Zechmei ster C, Bodea S, et al. Buga Fibre Pavilion: Towards an architectural application of novel fiber composite building systems[C]//Acadia. 2019: 140-149.

[29]

Pérez M G, Früh N, La Magna R, e t al. Integrative structural design of a timber-fibre hybrid building system fabricated through coreless filament winding: Maison Fibre[J]. Journal of Building Engineering, 2022, 49: 104114.doi: 10.1016/j.jobe.2022.104114

[30]

Pérez M G, Guo Y, Knippers J. Integrative material and structural design methods for natural fibres filament-wound composite structures: The LivMatS pavilion[J]. Materials & Design, 2022, 217: 110624.

[31]

Reichert S, Schwinn T, La Magna R, et al. Fibrous structures: An integrative approach to design computation, simulation and fabrication for lightweight, glass and carbon fibre composite structures in architecture based on biomimetic design principles[J]. Computer-Aided Design, 2014, 52: 27-39.doi: 10.1016/j.cad.2014.02.005

[32]

PÉREZ M G I L, ZECHMEISTER C, MENGES A, et al. Coreless filament-wound structures: Toward performative long-span and sustainable building systems[J]. 2022.

[33]

Mindermann P, Gil Pérez M, Knippers J, et al. Investigation of the fabrication suitability, structural performance, and sustainability of natural fibers in coreless filament winding[J]. Materials, 2022, 15(9): 3260.doi: 10.3390/ma15093260

[34]

Costalonga Martins V, Cutajar S, van der Hoven C, et al. FlexFlax stool: validation of moldless fabrication of complex spatial forms of natural fiber-reinforced polymer (NFRP) structures through an integrative approach of tailored fiber placement and coreless filament winding techniques[J]. Applied Sciences, 2020, 10(9): 3278.doi: 10.3390/app10093278

[35]

Göbert A, Deetman A, Rossi A, et al. 3DWoodWind: robotic winding processes for matrial-efficient lightweight veneer components[J]. Construction Robotics, 2022, 6(1): 39-55.doi: 10.1007/s41693-022-00067-2

[36]

Prado M, Dö rstelmann M, Solly J, et al. Elytra filament pavilion: Robotic filament winding for structural composite building systems[C]//Fabricate 2017: rethinking design and construction. UCLPress, 2017: 224-231.

[37]

Mindermann P, Bodea S, Menges A, et al. Development of an impregnation end-effector with fiber tension monitoring for robotic coreless filament winding[J]. Processes, 2021, 9(5): 806.doi: 10.3390/pr9050806

[38]

Bodea S, Mindermann P, Gresser G T, et al. Additive manufacturing of large coreless filament wound composite elements for building construction[J]. 3D Printing and Additive Manufacturing, 2022, 9(3): 145-160.doi: 10.1089/3dp.2020.0346

[39]

Mindermann P, Rongen B, Gubetini D, et al. Material monitoring of a composite dome pavilion made by robotic coreless filament winding[J]. Materials, 2021, 14(19): 5509.doi: 10.3390/ma14195509

[40]

Xin Z, Lu o D, Zhu G, et al. Adaptive robotic fiber winding system for multiple types of optimized structural components[J]. 2022.

[41]

Vasey L, Felbri ch B, Prado M, et al. Physically distributed multi-robot coordination and collaboration in construction: A case study in long span coreless filament winding for fiber composites[J]. Construction Robotics, 2020, 4(1-2): 3-18.doi: 10.1007/s41693-020-00031-y

[42]

Yablonina M, Prado M, Baharlou E, et al. Mobile robotic fabrication system for filament structures[J]. Fabricate: Rethinking Design and Construction, 2017, 3: 202-209.

[43]

Yablonina M, Menges A. Towards the development of fabrication machine species for filament materials[C]//Robotic Fabrication in Architecture, Art and Design 2018: Foreword by Sigrid Brell-Çokcan and Johannes Braumann, Association for Robots in Architecture. Springer International Publishing, 2019: 152-166.

[44]

Kayser M, Cai L, Falcone S, et al. FIBERBOTS: an autonomous swarm-based robotic system for digital fabrication of fiber-based composites[J]. Construction Robotics, 2018, 2: 67-79.doi: 10.1007/s41693-018-0013-y

[45]

Kayser M, Cai L, Falcone S, et al. Design of a multi-agent, fiber composite digital fabrication system[J]. Science Robotics, 2018, 3(22): eaau5630.doi: 10.1126/scirobotics.aau5630

[46]

Moritz Dörstelmann M, Prado M, Parascho S, et al. Integrative computational design methodologies for modular architectural fiber composite morphologies[J]. 2014.

[47]

Prado M, Dörstelmann M, Schwinn T, et al. Core-Less Filament Winding: Robotically Fabricated Fiber Composite Building Components[J]. Robotic fabrication in architecture, art and design 2014, 2014: 275-289.

[48]

Prado M. Skeletal composites: Robotic fabrication processes for lightweight multi-nodal structural components[J]. Construction Robotics, 2020, 4(3-4): 217-226.doi: 10.1007/s41693-020-00047-4

[49]

Gil Pérez M, Zechmeister C, Kannenberg F, et al. Computational co-design framework for coreless wound fibre–polymer composite structures[J]. Journal of Computational Design and Engineering, 2022, 9(2): 310-329.doi: 10.1093/jcde/qwab081

[50]

Guo Y, Pérez M G, Serhat G, et al. A design methodology for fiber layup optimization of filament wound structural components[C]//Structures. Elsevier, 2022, 38: 1125-1136.

[51]

Zechmeister C, Bodea S, Dambrosio N, et al. Design for long-span core-less wound, structural composite building elements[C]//Impact: Design With All Senses: Proceedings of the Design Modelling Symposium, Berlin 2019. Springer International Publishing, 2020: 401-415.

[52]

Perez M G, Rongen B, Koslowski V, et al. Structural design assisted by testing for modular coreless filament-wound composites: The BUGA Fibre Pavilion[J]. Construction and Building Materials, 2021, 301: 124303.doi: 10.1016/j.conbuildmat.2021.124303

[53]

Solly J, Früh N, Saffarian S, et al. Structural design of a lattice composite cantilever[C]//Structures. Elsevier, 2019, 18: 28-40.

Metrics
  • PDF Downloads(30)
  • Abstract views(615)
  • HTML views(352)
Catalog

Figures And Tables

Research and Prospect on Filament Winding Construction Technology

Xiongbin Li, Yan Zhou, Cheng Zhou

  • Copyright © Journal of Information Technologyin Civil Engineering and Architecture Editorial Office
  • 京ICP备17057008号
  • Address:No.30 Bei San Huan Dong Lu,Beijing 100013,China
  • Tel:010-64517910 Postcode:100013
  • Wechat:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn