2024, 16(1): 109-115. doi: 10.16670/j.cnki.cn11-5823/tu.2024.01.19
基于关联离散变量的钢框架结构优化设计
山东建筑大学土木工程学院,济南 250101 |
Optimization Design of Steel Frame Structures Based on the Correlated Discrete Variables
School of Civil Engineering, Shandong jianzhu University, Jinan 250101, China |
引用本文: 葛晓凡, 曲爽. 基于关联离散变量的钢框架结构优化设计[J]. 土木建筑工程信息技术, 2024, 16(1): 109-115. doi: 10.16670/j.cnki.cn11-5823/tu.2024.01.19
Citation: Xiaofan Ge, Shuang Qu. Optimization Design of Steel Frame Structures Based on the Correlated Discrete Variables[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2024, 16(1): 109-115. doi: 10.16670/j.cnki.cn11-5823/tu.2024.01.19
摘要:本文提出了一种基于“关联离散变量”概念的空间钢框架结构优化方案。利用ABAQUS有限元软件的计算模块及其Python语言接口,编写子程序实现Abaqus二次开发,对空间钢框架进行离散优化设计。本文以空间钢结构总质量为目标函数,构件截面参数为设计变量,在满足结构可靠性的前提下,利用计算机程序快捷、方便地完成了整个优化设计过程, 通过求解模型总质量的下限,得到了经济安全的最优设计结果,有效节省了钢材的用量。本文对空间钢框架的结构优化设计具有较好的参考价值,可为实现钢结构性能化设计提供有益的参考,进而推动钢结构设计的智能化和经济化。
Abstract: This paper proposes an optimization design scheme for spatial steel frame structures based on the concept of "correlated discrete variables". By utilizing the calculation module of ABAQUS finite element software and its Python language interface, a plug-in is developed, therefore the optimization design of a spatial steel frame structures can be implemented based on its correlated discrete variables. Taking the total mass of a spatial steel structure as the objective function and the cross-sectional parameters of the components as design variables, the entire optimization design process can be quickly and conveniently completed under the premise of meeting structural reliability by using the plug-in. The optimization design results are obtained by searching the lower limit value of the total mass of the structure, which effectively saves the amount of steel used. The research has provided a good reference for structural optimization design and performance-based design of spatial steel structures, thereby promoting the intellectualization and economization of steel structure design.
[1] |
热轧H型钢和部分T型钢: GB/T 11263—2017[S]. 北京: 中国标准出版社, 2017. |
[2] |
ARORA J S. Methods for discrete variable structural optimization[C]// Recent Advances in Optimum Structural Design. Reston, VA: ASCE, 2002: 1-40. |
[3] |
HUANG M W, ARORA J S. Optimal design of steel structures using standard sections[J]. Structural Optimization, 1997, 14(1): 24-35.doi: 10.1007/BF01197555 |
[4] |
陈俊岭, 彭文兵, 黄鑫. 二层钢框架—组合楼板体系抗倒塌试验研究[J]. 同济大学学报(自然科学版), 2012, 40(09): 1300-1305. |
[5] |
钢结构设计标准: GB 50017—2017[S]. 北京: 中国计划出版社, 2018. |
[6] |
钟善铜. 钢管混凝土结构[M]. 北京: 清华大学出版社, 2003. |
[7] |
韩林海. 钢管混凝土结构, 理论与实践[M]. 北京: 科学出版社, 2007. |
[8] |
建筑结构可靠性设计统一标准: GB50068-2018[S]. 北京: 中国建筑工业出版社出版, 2019. |
[9] |
KANNO Y. Mixed-integer second-order cone programming forglobal optimization of compliance of frame structure with discretedesign variables[J]. Structural and Multidisciplinary Optimization, 2016, 54(2): 301-316.doi: 10.1007/s00158-016-1406-5 |
[10] |
KURETA R, KANNO Y. A mixed integer programming approachto designing periodic frame structures with negative Poisson's ratio[J]. Opti-mization and Engineering, 2014, 15(3): 773-800.doi: 10.1007/s11081-013-9225-7 |
[11] |
HIROTA M, KANNO Y. Optimal design of periodic frame structures with negative thermal expansion via mixed integer programming[J]., 2015, 16(4): 767-809. Optimization and Engineering |
[12] | |
[13] |
SEON M. HAN, HAYM BENAROYA, TIMO-THY WEI. dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound and Vibration, 1999, 225(5). |
[14] |
André Teófilo Beck, Cláudio R.A. da Silva. Timoshen--ko versus Euler beam theory: Pitfalls of a deterministic approach[J]. Structural Safety, 2010, 33(1). |
计量
- PDF下载量(9)
- 文章访问量(601)
- HTML全文浏览量(587)