2023, 15(6): 123-127. doi: 10.16670/j.cnki.cn11-5823/tu.2023.06.21
虚实结合的道岔检测实验平台设计与应用
上海工程技术大学 城市轨道交通学院,上海 201620 |
Design and Application of Turnout Detection Experimental Platform Based on the Combination of Virtual and Real
School of Urban Rail Transportation, Shanghai University of Engineering Science, Shanghai 201620, China |
引用本文: 路宏遥, 石嵘. 虚实结合的道岔检测实验平台设计与应用[J]. 土木建筑工程信息技术, 2023, 15(6): 123-127. doi: 10.16670/j.cnki.cn11-5823/tu.2023.06.21
Citation: Hongyao Lu, Rong Shi. Design and Application of Turnout Detection Experimental Platform Based on the Combination of Virtual and Real[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2023, 15(6): 123-127. doi: 10.16670/j.cnki.cn11-5823/tu.2023.06.21
摘要:道岔作为实现列车转辙的关键结构,是轨道交通线路的薄弱环节,对服役状态下的道岔科学检测是保障轨道交通安全运营的重要前提。基于“BIM+VR”技术,开设虚实结合的道岔检测技术实验,有效解决了理论教学单一性和现场实践操作空间与时间局限性的问题,极大地激发了学生深入学习专业知识的热情。课程将理论学习、虚拟检测与现场实训有机结合,以立体化的方式培养学生理论知识的学习能力和实践技能的操作水平,有助于引导学生提高创新思维和工程意识,为培养轨道交通创新型人才贡献力量。
Abstract: Turnout is the key structure for train switch. As the weak link of rail transit line, scientific detection of turnout structure during service is an important guarantee to maintain the safe operation of rail transit. Adopting "BIM + VR" technology, this paper proposes a course of the turnout detection technology experiment combining virtual and real was set up, which effectively solves the problems of the singleness of theory teaching and the limitation of operation space and time of field practice and also has greatly stimulated students' enthusiasm of study. The course organically combined theoretical learning, virtual detection and on-site training to cultivate students' learning ability of theoretical knowledge and operation level of practical skills in a three-dimensional way, which is helpful to guide students to improve their innovative thinking and engineering awareness and contribute to the cultivation of innovative talents in track engineering.
[1] |
罗雁云, 周俊召, 熊永亮. 新工科战略背景下轨道交通通识课程教学探索[J]. 城市轨道交通研究, 2020, 23(11): 10-13+43. |
[2] |
冯昭君. 土木工程专业理论力学线下教学改革探索研究[J]. 四川文理学院学报, 2022, 32(02): 89-93. |
[3] |
彭其渊, 李力, 文超, 等. 面向协同决策能力培养的轨道交通虚拟仿真实验教学改革[J]. 高等工程教育研究, 2022(04): 81-85+115. |
[4] |
齐东春, 雷进生, 陈兴华. 基于BIM的土木工程课程体系及教学方法改革[J]. 土木建筑工程信息技术, 2021, 13(05): 115-118. |
[5] |
汪华健, 汪志锋. 基于虚拟现实的仿真教学系统设计[J]. 计算机仿真, 2022, 39(04): 205-209. |
[6] |
朱志辉, 刘丽丽, 徐磊, 等. 钢弹簧浮置板减振轨道虚拟仿真实验开发与实践[J]. 实验技术与管理, 2021, (12): 112-116. |
[7] |
张超, 何越磊, 路宏遥. 基于BIM+移动增强现实的高速铁路工务智能维修技术研究[J]. 铁道标准设计, 2021, (12): 44-49. |
[8] |
杨正丽, 蔡诗响, 鲁恒, 等. 校企协同模式下创新型人才培养研究[J]. 实验科学与技术, 2021, (02): 132-136. |
[9] |
丛丛, 李俊辉, 秦凯. 城市轨道交通行车作业虚拟仿真实训系统的设计与应用[J]. 城市轨道交通研究, 2020, (08): 44-49. |
[10] |
Alizadehsalehi S, Hadavi A, Huang J C. Assessment of AEC Students' Performance Using BIM-into-VR[J]. Applied Sciences. 2021, 11(7): 3225.doi: 10.3390/app11073225 |
[11] |
袁振霞, 边亚东, 赵毅, 等. 远程协助虚拟仿真技术在土木类实践教学中的探索[J]. 实验室研究与探索, 2020, (10): 203-207. |
[12] |
赵雪锋, 侯笑, 刘占省, 等. 高校BIM课程教学闭环管理体系研究[J]. 图学学报, 2021, 42(06): 1011-1017. |
[13] |
梅佳琪, 陈强. 基于虚拟现实的多感官视觉交互界面生成方法[J]. 计算机仿真, 2022, 39(09): 212-216. |
[14] |
张超, 何越磊, 娄小强, 等. 基于BIM+VR的高速道岔检测培训技术研究[J]. 物流工程与管理, 2021, 43(04): 83-87+68. |
计量
- PDF下载量(15)
- 文章访问量(827)
- HTML全文浏览量(609)