• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

2021, 13(3): 154-159. doi: 10.16670/j.cnki.cn11-5823/tu.2021.03.23

不同网格类型对建筑风环境仿真结果的影响

北京构力科技有限公司,上海 200023

网络出版日期: 2021-06-01

作者简介: 陈佳(1986-),男,工程师,主要研究方向:暖通空调、计算流体力学软件二次开发、风环境仿真; 王梦林(1987-),女,中级工程师,主要研究方向:BIM、绿色建筑

基金项目: 北京市绿色建筑设计工程技术研究中心平台建设与维护管理研究、北京市科技创新基地培育与发展工程专项 20180106230880010基于BIM的绿色建筑运营优化关键技术研发 2018YFC0705900

The Impact of Different Mesh Types on the Outdoor Wind Environment of Buildings

Beijing Glory PKPM Technology Co., Ltd., Shanghai 200023, China

Available Online: 2021-06-01

引用本文: 陈佳, 王梦林. 不同网格类型对建筑风环境仿真结果的影响[J]. 土木建筑工程信息技术, 2021, 13(3): 154-159. doi: 10.16670/j.cnki.cn11-5823/tu.2021.03.23

Citation: Jia Chen, Menglin Wang. The Impact of Different Mesh Types on the Outdoor Wind Environment of Buildings[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2021, 13(3): 154-159. doi: 10.16670/j.cnki.cn11-5823/tu.2021.03.23

摘要:本文使用开源CFD软件工具OpenFOAM,通过设置不同的建筑表面网格尺寸和不同的网格类型,计算建筑风环境的人行区风速分布情况,并按照绿建相关标准进行结果统计。通过对比分析,发现在不同的建筑表面尺寸下,贴体网格的算例中,高风速和低风速的面积占比相对较多,非贴体网格的算例中,面积占比大部分集中在中等风速。由此可以看出,贴体网格的计算结果能更好的预测高低风速的区域,因此建议使用贴体网格进行建筑室外风环境的仿真计算。

关键词: 计算流体力学, 风环境, OpenFOAM, 贴体, 非贴体, 适体, 网格
[1]

陶文铨. 数值传热学[M]. 第2版. 西安: 西安交通大学出版社, 2001.

[2]

许杰峰, 鲍玲玲, 马恩成, 等. 基于BIM的预制装配建筑体系应用技术[J]. 土木建筑工程信息技术, 2016, 8(4): 17-16. 

[3]

GB/T 50378-2019绿色建筑评价标准[S].

[4]

JGJ/T 449-2018民用建筑绿色性能计算标准[S].

[5]

赵志安, 邱相武, 姜立, 等. BIM技术在绿色建筑设计系列软件中的应用探讨[J]. 土木建筑工程信息技术, 2012, 4(4): 115-118.doi: 10.3969/j.issn.1674-7461.2012.04.022 

[6]

于凤全. 建筑物风环境CFD模拟方法综述[J]. 茂名学院学报, 2010, 20(01): 72-75. 

[7]

庄智, 余元波, 叶海, 等. 建筑室外风环境CFD模拟技术研究现状[J]. 建筑科学, 2014, 30(02): 108-114.doi: 10.3969/j.issn.1002-8528.2014.02.021

[8]

马剑, 程国标, 毛亚郎. 基于CFD技术的群体建筑风环境研究[J]. 浙江工业大学学报, 2007(03): 351-354.doi: 10.3969/j.issn.1006-4303.2007.03.025

[9]

Tominaga, Yoshihide & Mochida, Akashi & Yoshie, Ryuichiro & Kataoka, Hiroto & Nozu, T. & Yoshikawa, Masaru & Shirasawa, Taichi. (2008) AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics. 96.1749-1761.10.1016/j. jweia. 2008.02.058.

[10]

Bert Blocken, Ted Stathopoulos, Jan Carmeliet, Jan Hensen. Application of CFD in building performance simulation for the outdoor environment: an overview. Journal of Building Performance Simulation, Vol. 4, No. 2, June 2011, 157-184.

[11]

康忠良, 方媛媛. 计算风工程中的网格技术对比研究[J]. 土木建筑工程信息技术, 2015, 7(2): 80-83.doi: 10.3969/j.issn.1674-7461.2015.02.013 

[12]

阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(05): 562-589. 

[13]

Hagbo, Trond-Ola; Giljarhus, Knut Erik Teigen; Qu, Sen; Hjertager, Bjørn H(2019) The performance of structured and unstructured grids on wind simulations around a high-rise building. IOP Conference Series: Materials Science and Engineering. ISSN 1757-8981. Volume 700. Booklet 1.

[14]

王硕, 凡凤仙, 张盟盟等. 基于OpenFOAM的正弦形沙丘表面流场特性研究[J]. 上海理工大学学报, 2017(4). 

[15]

Kastner, Patrick & Dogan, Timur. (2018) Streamlining meshing methodologies for annual urban CFD simulations.

[16]

Li, Jing & Delmas, Aymeric & Donn, Michael & Willis, Riley. (2018) Validation and Comparison of Different CFD Simulation Software Predictions of Urban Wind Environment Based on AIJ Wind Tunnel Benchmarks. 27.10.22360/simaud. 2018. simaud. 027.

[17]

Mohan, Rakshantha & Sundararaj, Senthilkumar & B T, Kannan. (2019) Numerical simulation of flow over buildings using OpenFOAM®. AIP Conference Proceedings. 2112.020149.10.1063/1.5112334.

计量
  • PDF下载量(30)
  • 文章访问量(1978)
  • HTML全文浏览量(1338)
目录

Figures And Tables

不同网格类型对建筑风环境仿真结果的影响

陈佳, 王梦林

  • 版权所有© 《土木建筑工程信息技术》编辑部
  • 京ICP备17057008号
  • 地址:北京市朝阳区兴化路2号院1号楼
  • 电话:010-64517910 邮编:100013
  • 微信号:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn
本系统由北京仁和汇智信息技术有限公司设计开 技术支持: info@rhhz.net