• ISSN: 1674-7461
  • CN: 11-5823/TU
  • Hosted by: China Society and Technology Association
  • Organizer: China Graphics Society
  • Guidance: China Academy of Building Research

Citation: Shifeng Tao, Jufeng Wu, Qiang Zhou, Xungang Zhao, Xiongjue Wang, Sui Tan. Research and Application of Bridge Disease Detection Based on Deep Learning. Journal of Information Technologyin Civil Engineering and Architecture, 2023, 15(5): 52-57. doi: 10.16670/j.cnki.cn11-5823/tu.2023.05.09

2023, 15(5): 52-57. doi: 10.16670/j.cnki.cn11-5823/tu.2023.05.09

Research and Application of Bridge Disease Detection Based on Deep Learning

1. 

National Key Laboratory of Bridge Intelligent and Green Construction, Wuhan 430034, China

2. 

China Railway Bridge Research Institute Co., Ltd., Wuhan 430034, China

3. 

National Engineering Research Center of High-Speed Railway Construction Technology, Changsha 410075, China

Corresponding author: 周强,

Web Publishing Date: 2023-10-20

Fund Project: 2021年度中国中铁股份有限公司科技研究开发计划课题“轨道交通基础设施智能检测与评定-A” 2021-专项-08

[1]

Yongding Tian, Chao Chen, Kwesi Sagoe-Crentsil, et al. Intelligent robotic systems for structural health monitoring: Applications and future trends[J]. Automation in Construction, 2022, 139(7): 104273.

[2]

Tangbo Bai, Jianwei Yang, Guiyang Xu, et al. An optimized railway fastener detection method based on modified Faster R-CNN[J]. Measurement, 2021, 182(9): 109742.

[3]

Yongqing Jiang, Dandan Pang, Chengdong Li. A deep learning approach for fast detection and classification of concrete damage[J]. Automation in Construction, 2021, 128(8): 103785.

[4]

Chong Wei, Shurong Li, Kai Wu, et al. Damage inspection for road markings based on images with hierarchical semantic segmentation strategy and dynamic homography estimation[J]. Automation in Construction, 2021, 131(11): 103876.

[5]

Srinath S. Kumar, Dulcy M. Abraham, Mohammad R. Jahanshahi, et al. Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks[J]. Automation in Construction, 2018, 91(7): 273-283.

[6]

杨扬, 王连发, 张宇峰, 等. 基于多特征融合的混凝土结构表面病害图像分类算法[J]. 长安大学学报: 自然科学版, 2021, 41(3): 64-74. 

[7]

Xiaojian Han, Zhicheng Zhao, Lingkun Chen, et al. Structural damage-causing concrete cracking detection based on a deep-learning method[J]. Construction and Building Materials, 2022, 337(24): 127562

[8]

陈飞飞, 张宇峰, 韩晓健. 基于图像特征值的混凝土桥梁表面病害图像分类[J]. 结构工程师, 2018, 34(1): 59-63. 

[9]

杨魁, 王丹妮, 唐双, 等. 基于改进YOLO算法的混凝土表观病害识别方法[J]. 公路工程, 2021, 46(5): 81-86. 

[10]

Cha Y J, Choi W, Suh G, et al. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747.doi: 10.1111/mice.12334

[11]

Yu Z, Shen Y, Shen C. A real-time detection approach for bridge cracks based on YOLOv4-FPM[J]. Automation in Construction, 2021, 122(2): 103514.

[12]

Zhang, C, Chang, C-C, Jamshidi, M. Concrete bridge surface damage detection using a single – stage detector[J]. Computer -Aided Civil and Infrastructure Engineering, 2020, 122(2): 103514.

[13]

丁威, 俞珂, 舒江鹏. 基于深度学习和无人机的混凝土结构裂缝检测方法[J]. 土木工程学报, 2021, 54(S01): 1-12. 

[14]

阮小丽, 王波, 荆国强, 等. 桥梁混凝土结构表面裂缝自动识别技术研究[J]. 世界桥梁, 2017, 45(6): 55-59. 

[15]

R. Santos, D. Ribeiro, P. Lopes et al. Detection of exposed steel rebars based on deep-learning techniques and unmanned aerial vehicles[J]. Automation in Construction, 2022, 139(7): 104324.

[16]

阮小丽, 王波, 吴巨峰, 等. 基于深度学习的钢筋混凝土桥梁掉块露筋病害识别[J]. 世界桥梁, 2020, 48(6): 88-92. 

[17]

Isaac Osei Agyemang, Xiaoling Zhang, Daniel Acheampong, et al. Agbley, Autonomous health assessment of civil infrastructure using deep learning and smart devices[J]. Automation in Construction, 2022, 141(9): 104396.

[18]

Yan Xu, Jian Zhang. UAV-based bridge geometric shape measurement using automatic bridge component detection and distributed multi-view reconstruction[J]. Automation in Construction, 2022, 140(8): 104376.

Metrics
  • PDF Downloads(48)
  • Abstract views(1485)
  • HTML views(808)
Catalog

Figures And Tables

Research and Application of Bridge Disease Detection Based on Deep Learning

Shifeng Tao, Jufeng Wu, Qiang Zhou, Xungang Zhao, Xiongjue Wang, Sui Tan

  • Copyright © Journal of Information Technologyin Civil Engineering and Architecture Editorial Office
  • 京ICP备17057008号
  • Address:No.30 Bei San Huan Dong Lu,Beijing 100013,China
  • Tel:010-64517910 Postcode:100013
  • Wechat:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn