• ISSN: 1674-7461
  • CN: 11-5823/TU
  • Hosted by: China Society and Technology Association
  • Organizer: China Graphics Society
  • Guidance: China Academy of Building Research

Citation: Lei Ren, Zuohua Miao, Ziqiang Li, Likun Liu, Yang Tang, Mengting Wang, Yuan Xie. Worker Identification in Hazardous Areas Based on YOLOv3 Algorithm. Journal of Information Technologyin Civil Engineering and Architecture, 2022, 14(2): 10-17. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.02

2022, 14(2): 10-17. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.02

Worker Identification in Hazardous Areas Based on YOLOv3 Algorithm

1. 

School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China

2. 

Key Laboratory of Hubei Province for Efficient Utilization of Metallurgical Mineral Resources and Block Building, Wuhan, Hubei 430081, China

3. 

School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Corresponding author: 苗作华,

Web Publishing Date: 2022-04-01

Fund Project: 国家自然科学基金 41701624国家自然科学基金 41071242国家自然科学基金 41271449湖北省大学生创新训练项目 S202010488021

[1]

刘文平. 基于BIM与定位技术的施工事故预警机制研究[D]. 清华大学, 2015.

[2]

郭红领, 于言滔, 刘文平, 等. BIM和RFID在施工安全管理中的集成应用研究[J]. 工程管理学报, 2014, 28(4): 87-92. 

[3]

赵一秾, 李若熙, 曹语含, 等. 双流卷积网络工人异常行为识别算法研究[J]. 辽宁科技大学学报, 2019, 42(4): 301-308. 

[4]

强茂山, 张东成, 江汉臣. 基于加速度传感器的建筑工人施工行为识别方法[J]. 清华大学学报(自然科学版), 2017, 57(12): 1338-1344. 

[5]

张明媛, 曹志颖, 赵雪峰, 等. 基于深度学习的建筑工人安全帽佩戴识别研究[J]. 安全与环境学报, 2019, 19(2): 535-541. 

[6]

高寒, 骆汉宾, 方伟立. 基于机器视觉的施工危险区域侵入行为识别方法[J]. 土木工程与管理学报, 2019, 36(1): 123-128.doi: 10.3969/j.issn.2095-0985.2019.01.019

[7]

Han S U, Pena-Mora F. Vision-based detection of a unsafe actions of a construction worker: Case study ladder climbing[J]. Journal of Computing in Civil EngIneering, 2013, 27(6): 635-644.doi: 10.1061/(ASCE)CP.1943-5487.0000279

[8]

Kolar Z, Chen H, Luo X. Transfer learning and deep convolutional neural networks for safety guardrail detection in 2D images[J]. Automation in Construction, 2018, 89: 58-70.doi: 10.1016/j.autcon.2018.01.003

[9]

Fang Q, Li H, Luo X, et al. Detecting non-hardhatuse by a deep learning method from farfield surveillance videos[J]. Automation in Construction, 2018, 85: 1-9.doi: 10.1016/j.autcon.2017.09.018

[10]

赵挺生, 徐凯, 周炜. 施工现场危险区域分级管理[J]. 工业安全与环保, 2018, 44(11): 43-46.doi: 10.3969/j.issn.1001-425X.2018.11.012

[11]

王伟, 吕山可, 张雨果, 等. 基于BIM与机器视觉技术结合的建筑施工危险区域入侵预警研究[J]. 安全与环境工程, 2020, 27(2): 196-203. 

[12]

王毅恒, 许德章. 基于YOLOv3算法的农场环境下奶牛目标识别[J]. 广东石油化工学院学报, 2019, 29(4): 31-35.doi: 10.3969/j.issn.2095-2562.2019.04.007

[13]

Redmon J, Diwala S, Girshick R et al. You only look once: Unified, real-time object detectiono[C]//Proceedings of CVPR, 2015, 779-788.

[14]

李慕锴, 张涛, 崔文楠. 基于YOLOv3的红外行人小目标检测技术研究[J]. 红外技术, 2020, 42(2): 176-181. 

[15]

钟映春, 孙思语, 吕帅, 等. 铁塔航拍图像中鸟巢的YOLOv3识别研究[J]. 广东工业大学学报, 2020, 37(3): 42-48.doi: 10.12052/gdutxb.190128

Metrics
  • PDF Downloads(52)
  • Abstract views(1909)
  • HTML views(1130)
Catalog

Figures And Tables

Worker Identification in Hazardous Areas Based on YOLOv3 Algorithm

Lei Ren, Zuohua Miao, Ziqiang Li, Likun Liu, Yang Tang, Mengting Wang, Yuan Xie

  • Copyright © Journal of Information Technologyin Civil Engineering and Architecture Editorial Office
  • 京ICP备17057008号
  • Address:No.30 Bei San Huan Dong Lu,Beijing 100013,China
  • Tel:010-64517910 Postcode:100013
  • Wechat:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn