• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

基于YOLOv5算法的施工现场不安全状态智能检测
李自强, 任磊, 刘莉, 苗作华
2023,15(3):20-26. doi: 10.16670/j.cnki.cn11-5823/tu.2023.03.04
为更好地实现施工现场工人的安全监管,利用YOLOv5目标识别算法结合无人机倾斜摄影三维建模技术构建施工现场不安全状态智能检测模型,实现对人、机械等目标的识别与定位。通过实验对比分析确定最优目标识别算法,并构建多目标识别模型,实验结果符合理论猜想,整体识别平均精度达到了91.6%。在识别的基础上借助倾斜摄影三维模型所提供的空间位置信息进一步确定所识别目标的相对位置,从而确定工人的安全状态。这种视觉定位的准确性由三维模型所决定,所以最后通过实验验证了无人机倾斜摄影所构建的三维模型的距离误差在1.5% 左右,范围长度大于35m距离误差将小于1%,从而说明了目标识别模型所识别出物体的距离具有较高的准确性。
关键词: 安全监管, YOLOv5, 倾斜摄影, 视觉定位

出版年份

相关作者

相关热词

  • 版权所有© 《土木建筑工程信息技术》编辑部
  • 京ICP备17057008号
  • 地址:北京市朝阳区兴化路2号院1号楼
  • 电话:010-64517910 邮编:100013
  • 微信号:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn
本系统由北京仁和汇智信息技术有限公司设计开 技术支持: info@rhhz.net