2013,5(6):22-28.
莫斯科水晶岛和伦敦再保险大厦以奇特、优美的建筑造型给人以强烈的视觉冲击。莫斯科水晶岛的基本造型曲面是压缩后的伪球面,再保险大厦的基本造型曲面是接近于劣圆弧回转面的自由曲面。采用微分几何、微分方程方法(简称双微方法)讨论了这二个造型曲面上的斜驶线网格。平直的欧氏空间中的斜直线,具有定向和短程二个重要性质。将斜直线的定向性引伸到二维弯曲空间(回转曲面)上,就是斜驶线的内蕴定向性。从斜驶线的定义入手,推导出回转曲面上斜驶线的微分方程,求介得到劣圆弧回转面和伪球面上斜驶线方程,并通过相应的解析解或数值解,得到斜驶线上各离散点的坐标。用样条曲线依次连接相邻坐标点,得到样条逼近的斜驶线。再经过旋转阵列和镜像,就得到建筑表面的斜驶线网格。可供其他类似建筑的几何造型提供参考。