2020,12(1):30-38.
doi: 10.16670/j.cnki.cn11-5823/tu.2020.01.05
天然光营造的光环境以经济、自然、宜人、不可替代等特性为人们所习惯和喜爱。天然采光不仅有利于照明节能,而且有利于增加室内外的自然信息交流,改善空间卫生环境,调节空间使用者的心情。在建筑中充分利用天然光,对于创造良好光环境、节约能源、保护环境和构建绿色建筑具有重要意义。因此,优化建筑采光设计是很有必要的。本文提出了一个基于BIM技术和BP神经网络的建筑物天然采光分析思路,以成都理工大学图书馆为例,利用Revit软件建立三维可视化模型,生成gbXML格式的建筑物信息文件,再将gbXML文件导入Ecotect软件,在Ecotect软件内对图书馆的室内光环境进行模拟分析,计算自然采光系数,并定量分析窗台高度、玻璃透光率和墙体材料光反射率对室内光环境的影响。最后借助Weka软件,建立基于BP算法的神经网络模型,得到可预测在最优采光系数下变量变化范围的BP神经网络模型。