• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

基于YOLOv3算法的危险区域工人识别
任磊, 苗作华, 李自强, 刘礼坤, 汤阳, 王梦婷, 谢媛
2022,14(2):10-17. doi: 10.16670/j.cnki.cn11-5823/tu.2022.02.02
土木工程施工现场是一个复杂多变且事故发生率较高的作业环境,同一个工程场地存在着多个危险区域。对该区域传统的管理方式是派专职人员进行看守和管理,这种人工管理的方式易出错且不能够及时发现人员的进入情况。对于动态危险区域,操作人员在操作机械的同时还要兼顾周围环境情况,这不仅会降低工作效率且不利于发现该区域存在的工人。为了解决这个问题和提高监管的效率,计算机视觉的融入将会是很好的选择,该方法首先需要根据相关规章制度去确定危险区域,然后在合适的位置布置摄像头,最后运用YOLOv3(You Only Look Once,是一种快速和准确的实时对象检测算法,发展到YOLOv3实现了算法上的突破,在精度和速度上也实现了质的飞越)目标识别算法实现智能监管。本文介绍了该算法的基本原理和具体的目标识别实现途径,并针对危险区域的范围不同设计了两种训练集的制作方式,最后用实验去验证该方法的可行性与准确性,结果表明,该方法对于工人的识别具有较高的正确率,故把该方法用于危险区域的工人识别将会大大降低事故发生概率,弥补了单纯人工监管的缺陷,丰富了安全管理的手段。
关键词: 目标识别, 安全管理, 危险区域, YOLOv3模型

出版年份

相关作者

相关热词

  • 版权所有© 《土木建筑工程信息技术》编辑部
  • 京ICP备17057008号
  • 地址:北京市朝阳区兴化路2号院1号楼
  • 电话:010-64517910 邮编:100013
  • 微信号:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn
本系统由北京仁和汇智信息技术有限公司设计开 技术支持: info@rhhz.net