• ISSN: 1674-7461
  • CN: 11-5823/TU
  • Hosted by: China Society and Technology Association
  • Organizer: China Graphics Society
  • Guidance: China Academy of Building Research

Citation: Lingling WANG, Shiqi GUO, Ying ZHOU, Kunhui CHEN. Study on Indoor Risky Behavior Monitoring and Early Warning System for the Elderly. Journal of Information Technologyin Civil Engineering and Architecture, 2023, 15(1): 7-12. doi: 10.16670/j.cnki.cn11-5823/tu.2023.01.02

2023, 15(1): 7-12. doi: 10.16670/j.cnki.cn11-5823/tu.2023.01.02

Study on Indoor Risky Behavior Monitoring and Early Warning System for the Elderly

School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding author: 周迎,

Web Publishing Date: 2023-02-20

Fund Project: 国家重点研发计划“医养结合服务模式与规范的应用示范”项目 2020YFC2006000

[1]

孙祁祥, 朱南军. 中国人口老龄化分析[J]. 中国金融, 2015, 24: 21-3. 

[2]

Skubic M, Alexander G, Popescu M, et al. A smart home application to eldercare: current status and lessons learned[J]. Technology and Health Care, 2019;17(3): 183–201.

[3]

苌飞霸, 尹军, 张和华, 等. 可穿戴式健康监测系统研究与展望[J]. 中国医疗器械杂志, 2015, 39(01): 40-43. 

[4]

A.J.A. Majumder, I. Zerin, S.I. Ahamed, et al. A multi-sensor approach for fall risk prediction and prevention in the elderly[J]. SIGAPP Appl. Comput. Rev., 2014, 14: 41–52.doi: 10.1145/2600617.2600621

[5]

Sathyanarayana A, Joty S, Fernandez-Luque L, et al. Correction of: Sleep Quality Prediction From Wearable Data Using Deep Learning[J]. JMIR mhealth and uhealth, 2016, 4(4): 130.doi: 10.2196/mhealth.6953

[6]

Wang Z, Wu D, Chen J, et al. A triaxial accelerometer-based human activity recognition via eemd-based features and game-theory-based feature selection[J]. IEEE Sens.

[7]

ALARIFI A, ALWADAIN A. Killer heuristic optimized convolution neural network-based fall detection with wearable IoT sensor devices[J]. Measurement, 2020, 167: 108258.

[8]

Khan, Z. A, Sohn, W. A hierarchical abnormal human activity recognition system based on R-transform and kernel discriminant analysis for elderly health care[J]. Computing, 2013, 95 (2): 109–127.

[9]

M. S. Hossain. Patient status monitoring for smart home healthcare[C]. 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), 2016.

[10]

Espinosa R, Ponce H, GUTIéRREZ S, et al. A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset[J]. Computers in Biology and Medicine, 2019, 115: 103520.

[11]

王世刚, 孙爱朦, 赵文婷, 等. 基于时空兴趣点的单人行为及交互行为识别[J]. 吉林大学学报(工学版), 2015, 45(01): 304-308. 

[12]

Lai YL, Chen CL, Chang CH, et al. An intelligent health monitoring system using radio-frequency identification technology[J]. Technol Health Care.

[13]

Riboni, D, Civitarese, G, Bettini, C. Analysis of long-term abnormal behaviors for early detection of cognitive decline[C]//. In: IEEE International Workshop on PervAsive Technologies and care systems for sustainable Aging-in-place, Sydney, 2016.

[14]

Fleury A, Vacher M, Noury N. SVM-Based Multi-Modal Classification of Activities of Daily Living in Health Smart Homes: Sensors, Algorithms and First Experimental Results[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(2): 274-83.

Metrics
  • PDF Downloads(51)
  • Abstract views(1922)
  • HTML views(813)
Catalog

Figures And Tables

Study on Indoor Risky Behavior Monitoring and Early Warning System for the Elderly

Lingling WANG, Shiqi GUO, Ying ZHOU, Kunhui CHEN

  • Copyright © Journal of Information Technologyin Civil Engineering and Architecture Editorial Office
  • 京ICP备17057008号
  • Address:No.30 Bei San Huan Dong Lu,Beijing 100013,China
  • Tel:010-64517910 Postcode:100013
  • Wechat:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn