Citation: Jiaxi Li, Shan Song. VASA–Voxel-Based Architectural Space Analysis Study. Journal of Information Technologyin Civil Engineering and Architecture, 2023, 15(1): 25-29. doi: 10.16670/j.cnki.cn11-5823/tu.2023.01.05
2023, 15(1): 25-29. doi: 10.16670/j.cnki.cn11-5823/tu.2023.01.05
VASA–Voxel-Based Architectural Space Analysis Study
Autodesk Inc, Guangzhou 510630, China |
As same as what the game Minecraft embodies, Voxel-based Architectural Space Analysis(VASA) is a method of decomposing a model into cubes of a certain size. It transforms geometry or STL files and meshes from Revit into voxel models, which can then be used to perform a number of analyses on the 3D voxels, such as path analysis, daylight analysis, view analysis, acoustic analysis, etc. The voxel-based approach enables building space analysis to construct more complex scenarios and generate more accurate analysis results, as well as integrate voxel analysis into derivative design workflows.
[1] |
Kaufman A, Shimony E. 3D scan-conversion algorithms for voxel-based graphics[M]. 1987. |
[2] |
Cohen-Or D, Kaufman A E. Fundamentals of Surface Voxelization[J]. Graphical Models and Image Processing, 1995, 57(6): 453-461.doi: 10.1006/gmip.1995.1039 |
[3] |
Kaufman, A, Cohen, et al. Volume graphics[J]. Computer, 1993. |
[4] |
Kaufrrmn A. Efficient Algorithms for 3D Scan-Conversion o Parametric Curves, Surfaces, and ~rolumes[J]. ACM SIGGRAPH Computer Graphics, 1987. |
[5] |
Ix F D, Kaufman A. Incremental Triangle Voxelization[C]// Graphics Interface. 2000. |
[6] |
Yu W, Ai T. The Visualization and Analysis of POI Features under Network Space Supported by Kernel Density Estimation[J]. Acta Geodaetica Et Cartographica Sinica, 2015, 44(1): 82-90. |
[7] |
Kean Walmsley, Voxel-based Architectural Space Analysis (VASA). 2021. |
[8] |
Nurul-Hoque M, Harras K A. Nomad: Cross-Platform Computational Offloading and Migration in Femtoclouds Using WebAssembly[C]// 2021 IEEE International Conference on Cloud Engineering (IC2E). IEEE, 2021. |
[9] |
Pixley C, Jeong S W, Hachtel G D. Exact calculation of synchronization sequences based on binary decision diagrams[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1994, 13(8): 1024-1034.doi: 10.1109/43.298038 |
[10] |
Goldstein R, Breslav S, Khan A. Towards Voxel-Based Algorithms for Building Performance Simulation[C]// IBPSA-Canada eSim Conference. 2014. |
[11] |
Goldstein R, Breslav S, Walmsley K, et al. SpaceAnalysis: a tool for pathfinding, visibility, and acoustics analyses in generative design workflows. 2020. |
[12] |
陈博, 杨晓庆. 考古发掘虚拟仿真实验的建设与思考——以体素模型应用为中心[J]. 文物保护与考古科学, 2021, 33(05): 93-101. |
[13] |
梅宝玉, 杜丽娜, 李坤, 等. 基于体素的形态学分析梅尼埃病患者大脑灰质结构的改变[J]. 中国医学影像学杂志, 2021, 29(12): 1190-1194+1205. |
[14] |
魏天琪, 郑雄胜. 基于深度学习的三维点云分类方法研究[J]. 计算机应用研究, 2022, 39(05): 1289-1296. |
[15] |
徐文鹏, 苗龙涛, 侯守明, 等. 基于体素模型的3D打印支撑算法[J]. 图学学报, 2018, 39(02): 228-234. |
Metrics
- PDF Downloads(26)
- Abstract views(1323)
- HTML views(1133)