• ISSN: 1674-7461
  • CN: 11-5823/TU
  • 主管:中国科学技术协会
  • 主办:中国图学学会
  • 承办:中国建筑科学研究院有限公司

混凝土3D打印的机器视觉检测研究现状与展望
陈权要, 周燕, 周诚
2023,15(5):1-8. doi: 10.16670/j.cnki.cn11-5823/tu.2023.05.01
受打印材料、打印装备、打印工艺及环境条件的影响,混凝土3D打印成形质量控制较难,且传统的人工检测手段效率低下,因此,亟需寻求新的检测途径。机器视觉技术作为一种非接触式检测方式,已逐步开始应用在混凝土3D打印缺陷检测中。为此,本文从混凝土3D打印几何形貌与精度、层间变形与稳定性及表面缺陷三个方面,综述了机器视觉技术在混凝土3D打印缺陷检测中的研究现状,以期为混凝土3D打印质量控制及发展提供借鉴。
关键词: 混凝土3D打印, 机器视觉, 缺陷检测, 质量控制, 深度学习
基于机器视觉的混凝土3D打印几何特征自动提取方法研究
胡帅, 孙金桥, 王宇向, 霍亮, 陈权要, 周诚
2024,16(3):1-7. doi: 10.16670/j.cnki.cn11-5823/tu.2024.03.01
近年来,随着混凝土3D打印技术的不断发展,打印成品的质量受到越来越多的关注。打印成品的几何特征已成为评估打印质量的重要指标。针对当前3D打印混凝土几何特征提取中存在的诸如流程复杂、精度有限及缺乏评价指标等问题,本文设计了基于机器视觉的混凝土3D打印几何特征自动提取方法。首先,采用摄像头阵列部署方法获取打印成品的原始图像,并对原图像正畸以提高图像质量;其次,通过语义分割模型U-Net提取打印成品的几何特征,并对得到的结果进行优化;最后,通过量化的指标值,对其进行了可视化并评价打印结果。实验证明,本文提出的几何特征自动提取方法具有速度快、精度高等显著优势;此外,系统化的打印评价指标可为混凝土3D打印质量评估提供借鉴参考。
关键词: 混凝土3D打印, 视觉检测, 摄像头阵列, 深度学习, 几何特征提取

出版年份

相关作者

相关热词

  • 版权所有© 《土木建筑工程信息技术》编辑部
  • 京ICP备17057008号
  • 地址:北京市朝阳区兴化路2号院1号楼
  • 电话:010-64517910 邮编:100013
  • 微信号:tmjzgcxxjs  QQ:3676678954  E-mail:tmqk@cgn.net.cn
本系统由北京仁和汇智信息技术有限公司设计开 技术支持: info@rhhz.net